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We present a GW space-time algorithm for periodic systems in a Gaussian basis including spin-orbit cou-
pling. We employ lattice summation to compute the irreducible density response and the self-energy, while we
employ k-point sampling for computing the screened Coulomb interaction. Our algorithm enables accurate and
computationally efficient quasiparticle band structure calculations for atomically thin transition-metal dichalco-
genides. For monolayer MoS2, MoSe2, WS2, and WSe2, computed GW band gaps agree on average within
50 meV with plane-wave-based reference calculations. G0W0 band structures are obtained in less than two days
on a laptop (Intel i5, 192 GB RAM) or in less than 30 minutes using 1024 cores. Overall, our work provides an
efficient and scalable framework for GW calculations on atomically thin materials.

I. INTRODUCTION

GW calculations [1–3] have become a standard method
for calculating electron addition and removal energies of
molecules [4–7], two-dimensional materials [8–10] and bulk
solids [11–13]. Recent advancements of the GW method span
a broad spectrum, including the application to deep core exci-
tations [14–22], relativistic GW schemes [23–28] and vertex
corrections [29–38]. These developments have firmly estab-
lished GW as a powerful and versatile approach within the
domain of many-body perturbation theory.

Despite the methodological maturity of GW , computational
challenges remain, particularly when applied to atomically
thin materials. One of the primary limitations arises from the
use of plane-wave basis sets in systems with vacuum, such
as molecules or low-dimensional systems. The need to rep-
resent the vacuum leads to large plane-wave basis set size
and significant computational cost. These constraints moti-
vate the development of alternative basis representations. One
compelling solution involves atom-centered basis functions,
which are localized and naturally adapted to such geometries.
Atom-centered basis functions are already the standard for
GW implementations targeting molecules [3–7]. Also, several
implementations of GW with atom-centered basis functions
and periodic boundary conditions have been reported [39–45].
In pioneering work, Rohlfing et al. [39, 40] studied bulk semi-
conductors and a silicon surface finding good agreement to
plane-wave based GW implementations in the order of 0.1 eV
or better. The more recent periodic GW implementations with
atom-centered basis functions [41–44] focus on 3D crystals
and report similar precision. The GW implementations [39–
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44] use a formulation of GW in frequency and rely on k-point
sampling to account for the periodic boundary conditions.

An alternative is the GW space-time method [46, 47] which
has been originally formulated using plane waves and real-
space representations as well as time and frequency represen-
tations. The GW space-time method can be also reformu-
lated using an atom-centered basis set [48–51] which elim-
inates the use of plane-waves and real-space grids and al-
lows for low-scaling GW calculations on large molecules.
The GW space-time approach in a atom-centered basis can be
also combined with periodic boundary conditions, as we have
demonstrated in our previous work [45] where we employed
a Γ-only approach for the density response function and the
self-energy, while relying on dense k-point sampling for the
screened Coulomb interaction W to account for the divergence
of W at the Γ-point. This implementation enabled the study of
a twisted transition-metal dichalcogenide heterobilayers with
almost 1000 atoms in the unit cell. The drawback of the Γ-
only implementation [45] is that large unit cells are required
where the density response needs to vanish on the length scale
of the unit cell.

In this work, we address the limitation of the Γ-point only
approach [45], which requires large unit cells, by introducing
a lattice summation over neighbor cells for both the density
response and self-energy, as originally proposed in the GW
space-time method [46]. This extension enables the accurate
and efficient treatment of crystals with small unit cells. The
resulting GW algorithm is particularly well-suited for low-
dimensional materials, as the number of neighboring cells re-
quired in the lattice sums is significantly reduced compared to
3D bulk crystals. Furthermore, the Gaussian basis set is effi-
cient in simulations involving large vacuum regions, a com-
mon requirement when modeling low-dimensional systems.

Our implementation also supports the inclusion of relativis-
tic effects via spin-orbit coupling (SOC) from Gaussian dual-
space pseudopotentials [52–54] and a perturbative correction
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to the quasiparticle energies. We focus on GW band struc-
ture calculations of atomically thin transition metal dichalco-
genides (TMDCs) MoS2, MoSe2, WS2, WSe2 and we bench-
mark our GW band structures against state-of-the-art plane-
wave-based GW implementations in BerkeleyGW [55] and
VASP [12]. We demonstrate that our GW algorithm yields
accurate and converged quasiparticle band structures across
multiple convergence parameters, including basis set size, k-
point sampling, the summation of neighbor cells, and the
time- and frequency-mesh. We also discuss the computational
efficiency of our GW band structure algorithm, which enables
a GW band structure calculation of an atomically thin mate-
rial on a laptop (Intel Xeon i5, 192 GB RAM) within roughly
a day.

II. GW SPACE-TIME ALGORITHM

Many efficient GW algorithms [47, 49, 50] build on the GW
space-time method [46]. In order to introduce the basic idea of
the GW space-time method, we use a generic formulation in
this section for non-periodic systems projecting all quantities
on real-space grids. It is important to note that this formu-
lation differs from the original GW space-time method [46]
where some quantities were calculated using a plane-wave ba-
sis set.

In this work, we employ the G0W0 scheme which starts
from a self-consistent Kohn-Sham density functional theory
(KS-DFT) calculation [56],

[h0(r)+ vxc(r)]ψn(r) = ε
DFT
n ψn(r) . (1)

h0 contains the kinetic energy, the Hartree potential and
the external potential, while the exchange-correlation po-
tential vxc contains all electron-electron interactions beyond
Hartree. ψn(r) is the KS orbital n and εDFT

n the associated KS
eigenvalue. The terms G0 and W0 indicate that the Green’s
function G and the screened Coulomb interaction W are both
computed using KS orbitals and KS eigenvalues, i.e., self-
consistent updates of G and W from Green’s function theory
are omitted in G0W0.

KS orbitals and eigenvalues are used to calculate the single-
particle Green’s function in imaginary time,

G(r,r′, iτ) =


i

occ
∑
i

ψi(r)ψ∗
i (r′)e−|(εDFT

i −εF)τ|, τ < 0 ,

−i
empty

∑
a

ψ∗
a (r)ψa(r′)e−|(εDFT

a −εF)τ|, τ > 0 ,

(2)
where the sum over the index i runs over all occupied KS or-
bitals and the sum over the index a over all virtual, i.e., empty
KS orbitals. εF is the Fermi level. The irreducible polarizabil-
ity follows,

χ(r,r′, iτ) =−iG(r,r′, iτ)G(r,r′,−iτ) , (3)

which is then transformed to imaginary frequency,

χ(r,r′, iω) = i
∞∫

−∞

e−iωτ
χ(r,r′, iτ) dτ . (4)

This transform can be understood as Laplace transform fol-
lowed by analytic continuation to the imaginary axis and ef-
fectively takes the form of a Fourier transform [57]. Next, the
dielectric function ε can be calculated in imaginary frequency
from the irreducible polarizability,

ε(r,r′, iω) = δ (r− r′)−
∫

dr′′v(r,r′′)χ(r′′,r′, iω) , (5)

using the Dirac delta function δ (r) and the Coulomb interac-
tion v(r,r′)= 1/|r− r′|. The screened Coulomb interaction
can be computed from the inverse dielectric function,

W (r,r′, iω) =
∫

dr′′ ε−1(r,r′′, iω)v(r′′,r′) . (6)

It is convenient in GW implementations to split the screened
interaction W into the bare Coulomb interaction v and the cor-
relation part W c,

W c(r,r′, iω) =W (r,r′, iω)− v(r,r′) . (7)

In the space-time method, W c is required in imaginary time,

W c(r,r′, iτ) =
i

2π

∞∫
−∞

eiωτ W c(r,r′, iω) dω , (8)

and the correlation self-energy is given as product of the
Green’s function and the screened Coulomb interaction,

Σ
c(r,r′, iτ) = iG(r,r′, iτ)W c(r,r′, iτ) . (9)

The self-energy is then transformed to imaginary frequency,

Σ
c(r,r′, iω) = i

∞∫
−∞

e−iωτ
Σ

c(r,r′, iτ) dτ , (10)

and we calculate its (n,n)-diagonal element,

Σ
c
n(iω) = ⟨ψn|Σc(iω)|ψn⟩

=
∫

drdr′ ψ∗
n (r)Σ

c(r,r′, iω)ψn(r′) . (11)

The self-energy is then analytically continued to real fre-
quency [3, 58].

Focusing on the G0W0 method already introduced before,
we use KS orbitals to approximate the QP wavefunctions and
we compute G and W only once using KS orbitals and KS
eigenvalues from Eqs. (2) – (6). The QP energies ε

G0W0
n can

finally be calculated by solving the QP equation,

ε
G0W0
n = ε

DFT
n +ReΣ

c
n(ε

G0W0
n )+Σ

x
n − vxc

n , (12)

where Σx
n and vxc

n are the n,n-diagonal elements of the ex-
change self-energy and the exchange-correlation potential.
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III. KS-DFT WITH PERIODIC BOUNDARY CONDITIONS
AND GAUSSIAN BASIS FUNCTIONS

We use KS-DFT with periodic boundary conditions [59–
61], i.e., h0(r) and vxc(r) from Eq. (1) are lattice periodic,

h0(r+R) = h0(r) , vxc(r+R) = vxc(r) , (13)

for every lattice vector

R=
d

∑
j=1

n j a j , (14)

where d is the dimension, n j are integers and a j the primitive
vectors of the lattice.

Bloch’s theorem [62] states that the solutions ψnk(r) of the
Kohn-Sham equations

[h0(r)+ vxc(r)]ψnk(r) = ε
DFT
nk ψnk(r) (15)

with lattice-periodic h0(r) and vxc(r) are Bloch functions

ψnk(r) = eik·runk(r) (16)

where k is the crystal momentum in the first Bril-
louin zone (BZ) and unk(r) is a lattice-periodic function,
unk(r)= unk(r+R). The eigenvalues εDFT

nk of band n and
crystal momentum k of the first Brillouin zone are the DFT
bandstructure.

The requirement (16) on Bloch functions ψnk(r) can be ful-
filled by the basis expansion

ψnk(r) = ∑
µ

Cµn(k)∑
R

eik·R
φ

R
µ (r) , (17)

where Cµn(k) are molecular orbital (MO) coefficients and
φ R

µ (r) are atom-centered Gaussian-type basis functions cen-
tered on an atom in the cell with lattice vector R. For com-
puting the MO coefficients Cµn(k), one inserts Eq. (17) into
Eq. (15), multiplies with an atom-centered Gaussian func-
tion φ 0

ν (r) in the unit cell 0, and integrates over the whole
real space, which gives

∑
ν

hµν(k)Cνn(k) = ∑
ν

Sµν(k)Cνn(k)ε
DFT
nk , (18)

with the Kohn-Sham matrix

hµν(k) = ∑
R

eik·R hR
µν ,

hR
µν =

∫
dr φ

0
µ(r) [h0(r)+ vxc(r)]φ R

ν (r) ,
(19)

and the overlap matrix

Sµν(k) = ∑
R

eik·R SR
µν , SR

µν =
∫

dr φ
0
µ(r)φ

R
ν (r) . (20)

Note that the sums over lattice vectors R in Eqs. (19) and (20)
can be restricted to R with small |R| because the atom-
centered Gaussian function φ R

µ (r)≡ φ 0
µ(r−R) quickly de-

cays for large |r−R|.

The Kohn-Sham matrix hµν(k) depends on the electron
density n(r),

n(r) =
occ

∑
i

∫
BZ

dk
ΩBZ

|ψik(r)|2 , (21)

where we integrate over the crystal momentum k in the BZ
and ΩBZ denotes the volume of the BZ. To obtain an efficient
algorithm for computing n(r), we use Eq. (17) to arrive at

n(r) = ∑
µν

∑
R1R2

DR2−R1
µν φ

R1
µ (r)φ

R2
ν (r) (22)

using the density matrix

DR
µν =

∫
BZ

dk
ΩBZ

e−ik·R Dµν(k) , (23)

Dµν(k) =
occ

∑
n

Cµn(k)C∗
νn(k) . (24)

The integration over the BZ in Eq. (23) is executed in every
self-consistent field cycle of the KS-DFT calculation using a
discrete N1×N2×N3 Monkhorst-Pack k-point mesh {kℓ} [63]
for two-dimensional periodicity:

DR
µν ≃ 1

N1N2N3

BZ

∑
kℓ

e−ikℓ·R
occ

∑
n

Cµn(kℓ)C∗
νn(kℓ) . (25)

For a periodic direction j, we choose N j as even integers,
which leads to a k-mesh that excludes the Γ-point,

kℓ =
d

∑
j=1

ℓ j

2N j
b j , (26)

where we define ℓ= {ℓ j}d
j=1 and each ℓ j takes one of the fol-

lowing odd integers

ℓ j ∈ {±1,±3, . . . ,±(N j −1)} . (27)

b j are the primitive translation vectors of the reciprocal lattice
that fulfill a j1 ·b j2 = 2πδ j1 j2 .

Note that the density matrix DR
µν computed from Eq. (25)

features an erroneous periodicity in a superlattice with primi-
tive translation vectors {T j}d

j=1,

DR+T
µν = DR

µν , T =
d

∑
j=1

t jT j , T j = 2N j a j , (28)

where {t j}d
j=1 are integers. To avoid issues in a practical KS-

DFT calculation, we restrict the lattice vectors R in Eq. (25)
to a single supercell (SC) of the T-superlattice,

R ∈ SC ⇔ R =
d

∑
j=1

n j a j , n j ∈ {0 ,±1 , . . . ,±N j} . (29)

This restricts the lattice summation in Eq. (22) to the SC,
R1 ∈ SC and R2 ∈ SC. In the limit of a dense k-point mesh,



4

i.e., large N1,N2,N3, the SC (29) is large and the lattice sum-
mation (22) converges, because the overlap φ

R1
µ (r)φ

R2
ν (r)

quickly decays for large |R1 −R2|.
Starting from the eigenvalues εDFT

nk from Eq. (18), we
add spin-orbit coupling (SOC) V SOC from Hartwigsen-
Goedecker-Hutter (HGH) pseudopotentials [52–54], see de-
tails in Appendix H, to obtain the spin-orbit perturbed Hamil-
tonian:

hDFT+SOC
nσ ,n′σ ′ (k) = δnn′ δσσ ′ ε

DFT
nk +V SOC

nn′,σσ ′ (k) . (30)

We diagonalize the Hamiltonian with SOC to obtain the DFT
band structure with SOC:

∑
n′σ ′

hDFT+SOC
nσ ,n′σ ′ (k)C( j)

n′σ ′(k) = ε
DFT+SOC
jk C( j)

nσ (k) . (31)

IV. GW SPACE-TIME METHOD WITH GAUSSIAN BASIS
FUNCTIONS AND PERIODIC BOUNDARY CONDITIONS

In this section, we reformulate the GW space-time method
shown in Sec. II in an atomic-orbital basis with periodic
boundary conditions. The starting point is a DFT calcula-
tion with periodic boundary conditions in an atomic-orbital
basis (Sec. III). In the main text, we only present the working
equations that are implemented in the algorithm. We give a
detailed derivation of these equations in the Appendix.

As shown in Appendix A, the Green’s function in imaginary
time is given by [47]

Gµν(iτ,k) = θ(τ)
empty

∑
a

Cµa(k)C∗
νa(k)e

−(εak−εF)τ

−θ(−τ)
occ

∑
i

Cµi(k)C∗
ν i(k)e

−(εik−εF)τ .

(32)

Note that Eq. (32) is the analogue to Eq. (24) for the density
matrix. As further shown in Appendix A, the Green’s function
is transformed to real space via an integration over the BZ,

GR
µν(iτ) =

∫
BZ

dk
ΩBZ

e−ik·R Gµν(iτ,k) . (33)

The density response χR
PQ(iτ)= ⟨ϕ0

P|χ(iτ)|ϕR
Q ⟩ in imagi-

nary time in the RI basis {ϕR
P } can be obtained as (see Ap-

pendix A for a derivation and Appendix B for parallel imple-
mentation)

χ
R
PQ(iτ) = ∑

λR1νR2

[
∑
µ

SC

∑
S1

(µR1−S1 νR2 |P0) GS1
λ µ

(−iτ)
]

×
[
∑
σ

SC

∑
S2

(λR1 σR2−S2 |QR) GS2
νσ (iτ)

]
, (34)

where R is a lattice vector inside the SC [Eq. (29)],
R1,R2,S1,S2 are lattice vectors and

(µR1 νR2|PR) =
∫

drdr′ φ R1
µ (r)φ

R2
ν (r)Vrc(r− r′)ϕ

R
P (r

′)

(35)

is a three-center integral of the truncated Coulomb operator

Vrc(r− r′) =

{
1/|r− r′| if |r− r′| ≤ rc ,

0 else ,
(36)

with cutoff radius rc. The tensor (µR1 νR2 |PR) can be un-
derstood as deriving from the resolution of the identity with
the truncated Coulomb metric (RI-tCm) [64–66] (see Ap-
pendix C for details on periodic RI). The cutoff radius rc is
typically chosen in the order of a few Ångstroms [45, 65, 66].
In the limit rc→0, RI-tCm is equivalent to the RI with the
overlap metric which suffers from a slow convergence with
respect to the RI basis set size [64, 67]. In the limit of
rc→∞, RI-tCM is equivalent to the RI with the Coulomb met-
ric where the convergence with the RI basis set size is fast.
The drawback of the Coulomb metric is that tensor elements
(µR1 νR2|PR) from Eq. (35) with the Coulomb operator
only decay polynomially for |R1 −R|→∞ and |R2 −R|→∞

which prohibits the application of RI with the Coulomb metric
in this algorithm. When truncating the Coulomb operator as
in Eq. (36) at finite rc and when using Gaussian basis func-
tions, the tensor (µR1νR2|PR) decays like a Gaussian for
|R1 −R|→∞ and |R2 −R|→∞. We make use of this short-
range property in Eq. (34), where we only need to sum over
a limited number of cells R1 and R2 with small |R1|, |R2|. It
has been shown that RI-tCm converges quickly with the size
of the auxiliary basis {ϕR

P }. [64, 65]
Following the GW space-time method, [45, 46] we trans-

form the polarizability from real space and time to the Bril-
louin zone and frequency

χPQ(k, iω) =
SC

∑
R

∫
dτ cos(ωτ)eik·R

χ
R
PQ(iτ) . (37)

We execute the imaginary-time integration numerically using
minimax grids [47, 68, 69].

As next step, we calculate the dielectric function [45]

ϵ(k, iω) = Id−V0.5(k)M−1(k)χ(k, iω)M−1(k)V0.5(k)
(38)

where Id is the identity matrix and the truncated Coulomb ma-
trix M(k) appears due to the RI-tCm (details in Appendix C),

MPQ(k) =∑
R

eik·R
∫

drdr′ ϕ0
P(r)Vrc(r− r′)ϕ

R
Q (r

′) . (39)

We use Tikhonov regularization [70] for the RI expansion to
prevent linear dependencies of fit coefficients, as discussed in
the supporting information of Ref. [45]. The regularization
leads to the modified matrix inversion,

M−1(k) =
(
M(k)+αId

)−1
, (40)

where α is the regularization parameter.
V0.5(k) in Eq. (38) is the matrix square root of the bare

Coulomb interaction V(k) [42, 71–73]

VPQ(k) = ∑
R

eik·R
∫

drdr′ ϕ0
P(r)

1
|r− r′|

ϕ
R
Q (r

′) . (41)



5

Details on the lattice summation over R are given in Ap-
pendix D. We obtain the correlation part of the screened in-
teraction W c(iω)= (ε−1(iω)− 1)V as

Wc(k, iω) = V0.5(k)(ϵ−1(k, iω)− Id)V0.5(k) (42)

and transform it to real space W c,R
PQ = ⟨ϕ0

P|W c|ϕR
Q ⟩,

W c,R
PQ (iω) =

∫
BZ

dk
ΩBZ

e−ik·R W c
PQ(k, iω) . (43)

Special care is required for the BZ integral as W c
PQ(k, iω) di-

verges at the Γ-point with 1/k for two-dimensional materials
if ϕP and ϕQ are s-type basis functions [41–43]. We evaluate
W c

PQ(k, iω) using two Monkhorst-Pack meshes [63]: {kℓ} has
4N j k-points in periodic directions j and {qℓ} has 8N j k-points
in periodic directions j. The number of k-points in the {kℓ}
mesh and {qℓ} mesh is thus

Nk =
d

∏
j=1

4N j , Nq =
d

∏
j=1

8N j . (44)

We extrapolate the BZ integration (43) with the inverse square
root of the number of k-points [42]. Reformulating Eq. (43) ,
the k-extrapolated screened Coulomb interaction becomes

W c,R
PQ (iω) = ∑

ℓ

vℓ e−iqℓ·R W c
PQ(qℓ, iω)

−∑
ℓ

wℓ e−ikℓ·R W c
PQ(kℓ, iω) , (45)

where the extrapolation is incorporated into the integration
weights:

vℓ =
1

(1−
√

Nk/Nq)Nq
, wℓ =

1
(
√

Nq/Nk −1)Nk
. (46)

We transform W c,R
PQ (iω) back to k-points,

Ŵ c
PQ(k, iω) =

SC

∑
R

eik·R W c,R
PQ (iω) , (47)

where we only sum over the cells R∈ SC, see Eq. (29), to pre-
vent for the divergence of Ŵ c(k, iω) at k= 0. We incorporate
the RI metric,

W̃c(k, iω) = M−1(k)Ŵc(k, iω)M−1(k) , (48)

and transform to real space using standard k-point weights,

W̃ c,R
PQ (iω) =

∫
BZ

dk
ΩBZ

e−ik·R W̃ c
PQ(k, iω) . (49)

Following the GW space-time method [46], we trans-
form W c(iω) to imaginary time using minimax grids [47,
68, 69]. This completes the ingredients for the GW

self-energy Σc(iτ)= iG(iτ)W c(iτ). We calculate the self-
energy Σ

c,R
λσ

(iτ)= ⟨φ 0
λ
|Σc(iτ)|φ R

σ ⟩ in real space (derivation in
Appendix G),

Σ
c,R
λσ

(iτ) = i∑
Pν

SC

∑
R1

SC

∑
S1

[
∑
µ

SC

∑
S2

(λ0 µS1−S2 |PR1) GS2
µν(iτ)

]

×

[
∑
Q

SC

∑
R2

(σR νS1 |QR1−R2) W̃ c,R2
QP (iτ)

]
(50)

and in the Kohn-Sham basis ψnk(r),

Σ
c
λσ

(k, iτ) =
SC

∑
R

eik·R
Σ

c,R
λσ

(iτ) , (51)

Σ
c
nk(iτ) = ∑

λσ

C∗
λn(k)Σ

c
λσ

(k, iτ)Cσn(k) . (52)

A major advantage of the present GW algorithm is that
the self-energy is computed in real space, Eq. (50), involv-
ing only a modest number of neighbor cells R1,R2,S1,S2 to
be included. Instead, when using k-point sampling instead
of lattice summation to compute the self-energy, special care
needs to be taken due to the diverging W (k) at the Γ-point,
which requires special correction schemes [74]. In the present
algorithm, the divergence of W (k) at the Γ-point is taken into
account via BZ integration of W (k) in Eq. (43) with suitable
k-point grids, Eq. (45).

We calculate the exchange self-energy similarly to previous
work [66, 75],

Σ
x,R
λσ

(iτ) = i∑
Pν

SC

∑
R1

SC

∑
S1

[
∑
µ

SC

∑
S2

(λ0 µS1−S2 |PR1) DS2
µν

]

×

[
∑
Q

SC

∑
R2

(σR νS1 |QR1−R2) Ṽ tr,R2
QP

]
, (53)

where DS
µν is the density matrix (23) from KS-DFT and

Ṽtr,R =
∫

BZ

dk
ΩBZ

e−ik·R M−1(k)Vtr(k)M−1(k) , (54)

V tr
PQ(k) = ∑

R
eik·R

∫
drdr′ ϕ0

P(r)VrSC(r,r
′)ϕ

R
Q (r

′) (55)

is the truncated Coulomb matrix with truncation radius
rSC = min j N j|a j|/2, i.e., half of the shortest primitive trans-
lation vector of the supercell SC (29) [75, 76]. Note that
we restrict all lattice vector differences appearing in Eq. (50)
and (53) to the SC (29), i.e., S1−S2,R1−R2 ∈ SC.

We obtain the quasiparticle energies ε
G0W0
nk by replacing

the DFT exchange-correlation contribution vxc
nk with the self-

energy,

ε
G0W0
nk = ε

DFT
nk +Σ

x
nk +ReΣ

c
nk(ε

G0W0
nk )− vxc

nk . (56)
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Identically to the DFT band structure (31), we add the spin-
orbit potential V SOC to the eigenenergies to obtain the spin-
orbit corrected Hamiltonian (the details are given in Appendix
H):

hG0W0+SOC
nσ ,n′σ ′ (k) = δnn′ δσσ ′ ε

G0W0
nk +V SOC

nn′,σσ ′ (k) . (57)

Diagonalization leads to the GW band structure with SOC:

∑
n′σ ′

hG0W0+SOC
nσ ,n′σ ′ (k)C( j)

n′σ ′(k) = ε
G0W0+SOC
jk C( j)

nσ (k) . (58)

The primary difference between our algorithm and the Γ-
point-only GW implementation using Gaussian basis func-
tions reported in Ref. [45] lies in the treatment of periodic
boundary conditions. In our approach, both the irreducible
density response function χ and the self-energy Σ are com-
puted via explicit lattice summations [Eqs. (34) and (50)] over
all unit cells. In contrast, Ref. [45] restricts the lattice sum to
the nearest-neighbor cell, effectively circumventing the need
for a full lattice summation. This approach is only exact in
the limit of large unit cells, and the presented GW algorithm
enables the treatment of small unit cells.

V. COMPUTATIONAL DETAILS

A. Overview

There are several numerical approaches, also involving ap-
proximations, to compute GW band structures. Commonly
employed approximations are the use of pseudopotentials to
exclude core electrons from the computation, and the use of
plasmon-pole models to simplify the frequency dependence in
GW . In this work, we employ pseudopotentials, details given
in the following, but we avoid plasmon-pole models by treat-
ing the full frequency (and time) dependence.

The evaluation of intermediate quantities in the GW
method, which depend on the real-space coordinates r and r′,
requires the use of a basis set. Real-space grids, while con-
ceptually straightforward, typically involve a large number of
grid points and are therefore computationally less efficient.
Common alternatives include plane-wave and atomic-orbital
basis sets. When using identical pseudopotentials—or when
the influence of the pseudopotential is negligible—different
basis sets yield the same GW band structure, provided the ba-
sis is sufficiently large to ensure convergence. In practice,
agreement between different GW implementations is typically
within 0.1 eV when the same pseudopotentials are used across
codes [39, 77]. A comprehensive benchmark study compar-
ing GW results across different basis sets (e.g., plane-waves
vs. atom-centered orbitals) for a large and diverse set of ma-
terials—on the order of 100 solids—with agreement at the
10 meV level or better has yet to be conducted. To assess
the numerical precision of our GW implementation (Sec. IV),
we carry out illustrative tests on four selected reference mate-
rials, namely monolayer MoS2, MoSe2, WS2 and WSe2. We
use two well-established GW codes, BerkeleyGW [55] and
VASP [12], to compute reference band gaps and band struc-
tures for comparison.

B. Atomic geometries of MoS2, MoSe2, WS2, WSe2

For our benchmark calculations, we employ monolayer
transition metal dichalcogenides MoS2, MoSe2, WS2, and
WSe2. These materials are non-magnetic and stable, and they
attract widespread interest thanks to a rare combination of
properties: they are atomically thin, have a direct bandgap and
strong spin–orbit coupling which make them ideal for both
fundamental studies and emerging applications in electronics,
spintronics, optoelectronics and energy harvesting [78]. We
take atomic geometries and lattice parameters for these mate-
rials from the C2DB database [9].

C. GW space-time calculations (CP2K)

We have implemented the low-scaling GW space-time al-
gorithm presented in this work in the CP2K software pack-
age [79, 80]. CP2K employs a Gaussian basis set for rep-
resenting KS orbitals [Eq. (17)] and a plane-waves basis set
for the electron density to evaluate the Hartree potential via
Ewald summation [79]. We use Gaussian dual-space pseu-
dopotentials [52]. In the DFT calculation, we employ the PBE
exchange-correlation functional [81]. The plane-wave cutoff
for the electron density is set to 500 Ry. This value was con-
verged beforehand on the DFT-level results, as the plane-wave
grid is not used for the GW part of the calculations.

In the GW algorithm, we employ a minimax time-
frequency grid [47, 68, 69]. We compute two- and three-
center integrals over Gaussians using analytical schemes [82,
83]. The self-energy is analytically continued from imaginary
frequency to the real frequency using a Padé model [6, 58, 84]
with 16 parameters. Unless otherwise noted, we employ a
cutoff radius rc = 7 Å, an RI regularization α = 10−2 and a
box height for the 2D materials of 15 Å (for computing the
Fourier transform in the Hartree potential). As already stated,
the extrapolation of the k-integration of W [Eq. (46)] relies on
two k-meshes, one 4 times denser than the equivalent DFT k-
mesh along each direction and one 8 times denser (e.g. for a
32×32 DFT k-mesh, the corresponding coarse W k-mesh is
128×128 and the dense k-mesh is 256×256). The remain-
ing computational parameters include the number of minimax
time and frequency points Nτ/ω [47, 68, 69], the DFT k-mesh
[Eqs. (21), (23), (32); the DFT k-mesh also defines the SC su-
percell (29)], and the filter threshold for sparse matrix-tensor
operations in Eqs. (34), (50) and (53). In this paper, we will
use two sets of parameters: tight settings (Nτ/ω = 30, DFT
k-mesh: 32×32, filter: 10−11) which correspond to a refer-
ence set of parameters that we have defined through extensive
testing in order to yield well-converged GW band gaps, and
a set of light settings (Nτ/ω = 10, DFT k-mesh: 24×24, fil-
ter: 10−6) that have sufficiently reduced memory and compu-
tational costs in order to be used for laptop calculations while
still giving decently accurate results (quantitative values are
given in Sec. VI and Sec. VIII). Note that the memory bottle-
neck comes from the parallelization strategy, as one can see in
Appendix B, which implies the storage of all the three-centre



7

integrals on each parallel group. In theory, one could also re-
compute these at each loop of the code, which would in prac-
tice prohibitively increase the computational time.

We use the single-, double- and triple-zeta MOLOPT basis
sets [85] for expanding the KS orbitals, Eq. (17). These basis
sets have been optimized for the total energy of the ground
state so that they might exhibit a slow convergence behaviour
for excited states, and therefore for band gaps at the GW level.
This motivated us to also use augmented single-, double-
and triple-zeta Gaussian basis sets (aug-SZV-MOLOPT, aug-
DZVP-MOLOPT and aug-TZVP-MOLOPT). We have cre-
ated those by augmenting Gaussian SZV-MOLOPT, DZVP-
MOLOPT and TZVP-MOLOPT bases [85] of S, Se, Mo, W
with an additional s, p, d function, an additional f func-
tion (for Mo, W and aug-DZVP-MOLOPT and aug-TZVP-
MOLOPT of S, Se) and an additional g function (all aug-
TZVP-MOLOPT and aug-DZVP-MOLOPT of Mo, W). We
have optimized the contraction coefficients of the additional
functions by optimizing the lowest five GW+Bethe-Salpeter
excitation energies [86] of a molecular set [85]. We will
report DFT and GW with the original, i.e., non-augmented
MOLOPT basis sets and the augmented MOLOPT basis sets.

For the density response (34), dielectric function (38) and
screened Coulomb interaction (42), an auxiliary Gaussian RI
basis set is required. There is no general approach for con-
structing optimally sized RI basis sets, as their design is
closely tied to the chosen AO basis. In the case of the widely
used cc-pVNZ Dunning basis sets [87], for example, the cor-
responding RI basis sets introduced in Ref. [88] provide a
single, fixed RI basis for each AO basis. As a result, conver-
gence with respect to the size of the RI basis is not commonly
investigated. It is also possible to generate RI basis sets on the
fly [89], although this usually leads to fairly large numbers of
basis functions. In our case, we have optimized the RI ba-
sis set {ϕP} by matching the RI-MP2 correlation energy [90]
of single atoms to the MP2 correlation energy. Unless stated
otherwise, all reference calculations in this paper were carried
using an RI basis with a relative RI-MP2 correlation energy
difference of 10−3 with respect to the corresponding MP2 cor-
relation energy.

We incorporate SOC via parameters from HGH Gaussian
dual-space pseudopotentials [52–54], see Eqs. (31), (58) and
Appendix H for details. We compute the SOC for states in a
window of 40 eV, so 20 eV below the valence band maximum
to 20 eV above the conduction band minimum, in order to
avoid possible numerical instabilities with bands far from the
gap. For the case of WSe2, we chose a window to 20 eV for
aug-DZVP-MOLOPT and aug-TZVP-MOLOPT, as discussed
in Appendix H.

All inputs and outputs of the calculations are openly avail-
able, see data and code availability statement.

D. Reference GW calculations with a plane-wave-based
algorithm (BerkeleyGW)

QUANTUM ESPRESSO. We performed the QUANTUM
ESPRESSO (QE) [91] DFT calculations employing the PBE

exchange-correlation functional [81]. Fully relativistic norm-
conserving non-relativistic pseudopotentials were used, as
provided by the PseudoDojo database [92]. A plane-wave en-
ergy cut-off of 100 Ry was applied, and the self-consistent
charge density was converged on a 30× 30× 1 k-grid with a
total energy convergence threshold of 10−9 Ry.

BerkeleyGW. Using the QE DFT energies and states,
we performed for each material, a one-shot GW calculation
(G0W0) using the BerkeleyGW package [55, 93]. We con-
sidered the full spinor implementation of BerkeleyGW [94],
which incorporates SOC non-pertubatively. The dielectric
matrix was computed with a dielectric cut-off of 25 Ry, con-
sidering a total of 3999 occupied and empty bands on a
12× 12× 1 uniform k-grid. For completeness, we computed
the quasi-particle band-gap using the generalized plasmon-
pole model of Hybertsen-Louie [93] (see Appendix I) and the
full-frequency evaluation of the self-energy. In the explicit
full frequency calculation, we used the contour-deformation
method with the Adler-Wiser formula. We employed a fre-
quency step and broadening of 0.25 eV, using 15 frequency
points along the imaginary axis within the contour deforma-
tion approach. A low-frequency cutoff of 20.0 eV was set
to restrict the real-axis integration range. To accelerate con-
vergence in the vicinity of |q| → 0, a non-uniform neck sub-
sampling approach was employed [95] and the spurious in-
teractions between periodic replicas in the perpendicular di-
rection to the surface were removed with a Coulomb interac-
tion truncation scheme [96]. The full frequency dependence
of self-energy was evaluated with a frequency step of 0.2 eV
in the frequency range [−2.0,2.0] eV and centering the fre-
quency grid around each mean-field quasi-particle energy. For
the band structures, the quasi-particle energies computed on
the coarse k-grid were interpolated along high-symmetry k-
paths.

E. Reference GW calculations with the
projector-augmented-wave scheme (VASP)

To obtain the quasi-particle band gap, we carry out a single-
shot G0W0 calculation using the Vienna Ab initio Simula-
tion Package (VASP) [97, 98]. In this process, the ini-
tial KS wavefunctions and energy levels, derived from a
preceding DFT calculation also performed with VASP, are
used. Core electrons are treated using the GW adapta-
tion of the projector-augmented-wave (PAW) pseudopoten-
tials [99, 100]. For all TMDCs, we apply PAWs constructed
on the Perdew–Burke–Ernzerhof (PBE) functional [81] with
an energy cutoff of 500 eV. The considered valence elec-
tron configurations are 4s24p65s14d5 for Mo, 3s23p4 for S,
5p66s25d4 for W, 4s24p4 for Se. A total of 384 bands, com-
prising both occupied and unoccupied states, are taken into
account, along with a uniform k-grid of 18×18×1 for MoS2
and WS2, and of 15× 15× 1 for MoSe2 and WSe2, ensuring
smooth convergence in the vicinity of |q| → 0. Moreover, the
dielectric tensor is broadened with a Lorentzian of 0.01 eV
in all cases except for MoSe2, where a broadening of 0.1 eV
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FIG. 1. PBE+SOC Bandstructures of monolayer MoS2, MoSe2, WS2 and WSe2, computed from Eq. (31) using Gaussian basis sets (CP2K)
and a plane-wave basis (QE). The computational details are given in Sec. V C and V D. The numerical values of the direct band gap at K are
reported in Table I.

is applied. Finally, the self-energy is calculated using a full-
frequency implementation with 100 points along the imagi-
nary frequency grid, as provided in VASP.

VI. DFT BAND STRUCTURE OF MoS2, MoSe2, WS2, WSe2

We begin by analyzing the DFT band structures and band
gaps of monolayer MoS2, MoSe2, WS2, and WSe2, with par-
ticular focus on the agreement between the three numerical
approaches described in Sec. V, namely Gaussian basis sets
versus plane waves, and different treatments of core electrons
via pseudopotentials. This comparison is important because
G0W0 band structures are computed on top of the underlying
Kohn-Sham DFT results (see, for example, Eq. (56)). Since
discrepancies in the GW band structures computed from dif-
ferent numerical approaches are expected to be larger than
those at the DFT level, close agreement among the DFT band
structures is a necessary prerequisite for a reliable GW bench-
mark.

We show the DFT band structure computed with the PBE
exchange-correlation functional [81] and SOC in Fig. 1, for
the aug-SZV-MOLOPT basis set (light settings) and the aug-
DZVP-MOLOPT (tight settings), and the band structure com-
puted from QE (with 8 empty bands). We observe excellent
agreement between the aug-DZVP-MOLOPT calculation and
the QE calculation, with a difference of 18 meV on average

between their respective PBE+SOC bandgaps (see Table I),
and also with VASP results with a difference of 10 meV. The
agreement of the PBE+SOC gap computed with the small aug-
SZV-MOLOPT basis is also good, the average deviation is
29 meV to QE and 23 meV to VASP (Table I). This shows a
good agreement of DFT band structures between each code,
which validates their use as a starting point for a GW bench-
mark. Table I also reports the DFT band gaps without SOC
and the SOC splitting at the K-point, demonstrating that our
approach yields SOC splittings in good agreement with plane-
wave reference calculations.

For comparison, we also computed the band gaps using
the original, non-augmented MOLOPT basis sets [85] (see
Table I). At the DFT level, the results show good agree-
ment with those from augmented basis sets—except for SZV-
MOLOPT—indicating that augmentation is not strictly re-
quired for fast convergence of the DFT band gap with respect
to basis set size.

To assess the accuracy of the SOC implementation, we re-
port in Table I the spin-orbit splitting of the valence band max-
imum at the K-point. This splitting is crucial as it is involved
in determining the (optical) energy difference between A and
B excitons, observed in reflectance and photoluminescence
spectra [101, 102]. It thus plays a crucial role for valley selec-
tive optical excitations. We observe good agreement between
our perturbative SOC implementation and the fully relativistic
implementation in QE, with an average difference of 17 meV



9

TABLE I. PBE bandgap, PBE+SOC bandgap [Eq. (31)], G0W0@PBE+SOC bandgap [Eq. (58)] and K-point SOC splitting (in eV) of monolayer
MoS2, MoSe2, WS2 and WSe2 for various Gaussian MOLOPT basis sets [85] with tight parameters (unless otherwise noted), and computed
from the plane-wave codes QUANTUM ESPRESSO (QE) [91], BerkeleyGW (BGW) [55] and VASP [97, 98]. The GW results for the aug-
TZVP-MOLOPT basis set are computationally intractable with our current implementation.

PBE bandgap PBE+SOC bandgap K-point PBE+SOC splitting G0W0@PBE+SOC bandgap
MoS2 MoSe2 WS2 WSe2 MoS2 MoSe2 WS2 WSe2 MoS2 MoSe2 WS2 WSe2 MoS2 MoSe2 WS2 WSe2

SZV 1.620 1.492 1.858 1.576 1.611 1.373 1.590 1.231 0.168 0.210 0.474 0.581 2.37 1.86 2.46 1.91
DZVP 1.697 1.441 1.833 1.557 1.614 1.325 1.560 1.254 0.155 0.199 0.433 0.476 2.42 1.98 2.44 2.00
TZVP 1.688 1.446 1.822 1.555 1.606 1.328 1.545 1.246 0.151 0.197 0.439 0.488 2.36 1.97 2.43 1.98
TZV2P 1.683 1.450 1.813 1.550 1.602 1.335 1.541 1.246 0.150 0.194 0.434 0.478 2.35 1.99 2.44 2.02
aug-SZV, light 1.711 1.448 1.798 1.529 1.625 1.320 1.527 1.232 0.158 0.218 0.439 0.473 2.35 1.89 2.43 1.99
aug-SZV 1.711 1.448 1.798 1.529 1.625 1.320 1.527 1.232 0.158 0.218 0.439 0.473 2.34 1.92 2.38 1.96
aug-DZVP 1.679 1.456 1.810 1.558 1.598 1.333 1.540 1.234 0.150 0.206 0.430 0.508 2.30 1.94 2.34 1.93
aug-TZVP 1.682 1.451 1.812 1.552 1.599 1.327 1.538 1.237 0.151 0.197 0.440 0.503 N/A N/A N/A N/A
QE/BGW 1.680 1.450 1.818 1.554 1.602 1.343 1.562 1.268 0.149 0.186 0.427 0.465 2.28 1.98 2.36 2.05
VASP 1.681 1.450 1.816 1.552 1.599 1.341 1.550 1.256 0.150 0.186 0.427 0.464 2.29 2.01 2.37 2.02

between the aug-DZVP-MOLOPT and QE results, as an ex-
ample. The difference is more significant for the selenium-
based TMDs, with 32 meV on average whereas the difference
is 2 meV for the sulfur-based TMDs. The results are sim-
ilar for the comparison with the VASP SOC-splitting. This
finding validates our perturbative SOC treatment from HGH
pseudopotentials [Eqs. (31), (58) and Appendix H].

We demonstrate the impact of SOC on the band structure
by giving in Appendix H the comparison between the PBE
and PBE+SOC bandstructures for all monolayers (Fig. 10).
One can therefore see that the SOC lifts the spin degeneracy
and therefore splits the band structure, especially at the K-
point as we have already discussed, This leads to a reduction
of the band gap with respect to the calculation without SOC,
especially in the case of WS2 and WSe2 where the band gap
is lowered by 0.3 eV (Table I).

VII. GW BAND GAP OF WSe2: CONVERGENCE STUDY

In this section, we analyze the convergence of the GW
bandgap of monolayer WSe2 with the numerical parameters
summarized in Sec. V C. We focus on the direct band gap of
WSe2 at K, calculated using G0W0@PBE including SOC.

Using our tight convergence settings (Sec. V C), we obtain
a G0W0@PBE+SOC band gap of 1.95 eV with the aug-SZV-
MOLOPT basis and 1.93 eV with the aug-DZVP-MOLOPT
basis (Table I). A larger augmented basis set is not used due
to current memory limitations in our implementation. Fig. 2
shows how the band gap changes with various computational
parameters. In Fig. 2a, we test different sizes of the time-
frequency grid. We find that the gap changes by up to 12 meV
in G0W0@PBE (blue trace), when using 14, 20, 26, 30 and
34 points. These variations can arise by poles in the self-
energy [108], which is an unphysical feature of G0W0@PBE
and eigenvalue self-consistency in G will cure this defi-
ciency [107, 108]. We apply Hedin’s shift [1, 3, 103–106]
to approximate eigenvalue self-consistency in G, which re-

duces the variation between 14 and 34 time-frequency points
to 3 meV (red curve in Fig. 1a).

The band gap is also converged with respect to the k-point
mesh from DFT (Eq. (26), Fig. 2c), changing by less than
10 meV between a 24×24 and 48×48 k-point meshes. The
filter threshold for three-center integrals (35) decides about
removing small three-center integrals from the calculation.
Thus, decreasing the filter threshold increases the numerical
precision and we demonstrate in Fig. 2e that a filter threshold
of 10−11 is sufficient for sub-meV convergence.

Note that the number of cells included in the lattice
sums (34), (50) and (53) depend on both the filter threshold
of three-center integrals (Fig. 2e) and the supercell "SC" de-
fined in Eq. (29). The size of the supercell "SC" is deter-
mined by the DFT k-mesh [Eq. (29)]. We thus demonstrate
convergence w.r.t. the number of cells in the lattice sums (34),
(50) and (53) by demonstrating convergence with the k-mesh
(Fig. 2c) and the filter threshold (Fig. 2e). Similarly, we show
the fast convergence of the lattice sum (41) of the Coulomb
matrix in Fig. 2i (the size factor of the lattice summation is
defined in Appendix D). Also, the box height (Fig. 2g) can be
well-converged.

The computational parameters with the most impact on
the computation time are the k-mesh (Fig. 2d) and the basis
set (Fig. 2l). When applying the present GW algorithm to
other materials, we recommend to employ safe numerical pa-
rameters for the time-frequency integration (30 points), filter
(10−12) and box height (15 Å), and to focus convergence tests
on the k-mesh and the basis set.

We also study the convergence of the GW gap with respect
to the RI basis size in Fig. 3. Without regularization (α = 0),
the band gap increases with RI basis size (Fig. 3a). We assign
this issue to linear dependencies in the RI basis set, which
leads to numerical instabilities in the RI basis expansion, see
Appendix C, Eq. (C2). In a nutshell, numerical instabilities
arise when two spatially close diffuse s-type RI function can
partially compensate each other, leading to large expansion
coefficients BµRνT

PP in Eq. (C2) with alternating sign.
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FIG. 2. G0W0@PBE+SOC band gap of monolayer WSe2 and execution time as a function of the number of time points τ (Sec. IV), the k-mesh
(Eqs. (21), (23), (32)), the filter threshold (for Eqs. (34), (50) and (53), see Eqs. (B1) and (B2)), the simulation cell box height (Sec. V C), the
size factor ∆ for VPQ(k) (Eq. (D21)) and the number of basis functions (Sec. V C). Default parameters are reported on top. In (a), we also show
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FIG. 4. G0W0@PBE+SOC Bandstructures of monolayer MoS2, MoSe2, WS2 and WSe2, computed from the algorithm presented in this work
[CP2K code, Eq. (58)] and computed from BerkeleyGW. The computational details are given in Sec. V C and V D

To fix this issue, we use RI regularization [45] via α = 10−3

and α = 10−2 in Eq. (40). RI regularization ensures numer-
ical stability, see Fig. 3b,c: For an RI basis set size of a
single WSe2 unit between 130 and 187 and a cutoff radius
rc ∈{5Å,7Å,9 Å}, the GW gap is identical within 27 meV.

VIII. GW BAND STRUCTURE OF MoS2, MoSe2, WS2, WSe2

We employ our GW algorithm to compute the band struc-
ture of MoS2, MoSe2, WS2 and WSe2 using two sets of pa-

rameters: an aug-SZV-MOLOPT basis with light settings and
an aug-DZVP-MOLOPT basis with tight settings, as shown
in Fig. 4. For comparison, we also include band structures
computed using a reference plane-wave-based implementa-
tion (BerkeleyGW) with 8 empty bands. The overall qualita-
tive agreement is good; for quantitative assessment, we focus
on the band gap at the K-point (see Table I). With the aug-
DZVP-MOLOPT basis and tight settings, the GW band gaps
agree with the plane-wave results on average within 50 meV.
The agreement varies across the four materials, and is better
for materials containing sulfur (20 meV) than materials con-
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Average G0W0@PBE+SOC Band gap deviation (meV)

FIG. 5. Average deviation in meV across all monolayers TMDs
of the G0W0@PBE+SOC band gap between the TZV2P-MOLOPT,
aug-SZV-MOLOPT (light), aug-DZVP-MOLOPT, BerkeleyGW
(BGW) and VASP calculations. The G0W0@PBE+SOC band gaps
for the individual monolayer TMDs are given in Table I.

taining selenium (75 meV). Note that this discrepancy is also
observed between the plane-wave codes (Table I), as the av-
erage deviation is 10 meV for the materials containing sul-
fur and 30 meV for the materials containing selenium. For
the aug-SZV-MOLOPT basis and light settings, the average
agreement is 70 meV. This shows that one can achieve de-
cent numerical precision of GW band structures using the rel-
atively small aug-SZV-MOLOPT basis set.

The average deviations of GW band gaps between the nu-
merical approaches are summarized in Fig. 5. The discrepan-
cies may be attributed to several factors, including the use of
different pseudopotentials, the limited size of the aug-DZVP-
MOLOPT basis compared to high plane-wave cutoffs, and
sensitivity to convergence parameters in frequency integra-
tion or dielectric matrix evaluation. Time-frequency resolu-
tion may also contribute to residual differences, which could
be mitigated using Hedin’s shift [108].

Comparison to experimental measurements is inherently
challenging, as the band gap is highly sensitive to exter-
nal influences that are difficult to control, such as substrate
screening effects [109] and strain [110]. Reported experi-
mental band gaps for the four materials range from 1.9 eV
to 2.4 eV [109, 111–113], which aligns with our GW re-
sults (Table I). However, achieving a precise one-to-one cor-
respondence for each material remains elusive at this stage,
especially given that many experimentally reported band gaps
are measured in the presence of a substrate, which is not
considered in this work, as it lies outside the scope of this
manuscript.
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FIG. 6. Scaling of the computational time for the G0W0@PBE+SOC
band gap calculation of monolayer MoS2 with respect to the num-
ber of cores. We use an aug-SZV-MOLOPT basis and light settings
(Sec. V C).

For completeness, we also performed benchmark full-
spinor calculations with BerkeleyGW using the generalized
plasmon pole model [93], see Table II in Appendix I. This
approximation yields bandgaps with significant deviations -
up to 0.25 eV - when compared with the full frequency cal-
culation of the quasi-particle self-energy. These discrepan-
cies sharply contrast with the excellent agreement of below
50 meV between the different codes, as reported in Fig. 5.

To demonstrate the computational efficiency of our GW al-
gorithm, we carried out GW band structure calculations with
settings "aug-SZV-MOLOPT, light" on a laptop with an Intel
i5 processor (14 cores) and 192 GB RAM. The computation
time on this hardware is between 20 and 45 hours, depending
on the 2D material. To study the scalability of our implemen-
tation, we ran a computational performance test on an HPC
system, using the same parameters as for the laptop calcula-
tions in order for the timings to be comparable. The results
show that on this HPC system using 1024 cores, the same
calculations completed in approximately 23 minutes (Fig. 6).
These results demonstrate that our method enables efficient
and scalable GW band structure calculations of 2D materials.

IX. CONCLUSION AND OUTLOOK

We have developed a GW space-time algorithm for peri-
odic systems using Gaussian basis functions with spin-orbit
coupling, enabling accurate quasiparticle band structure cal-
culations for atomically thin materials. Our implementation,
available in the open-source code CP2K, achieves high ac-
curacy: for monolayer MoS2, MoSe2, WS2, and WSe2, GW
band gaps agree on average within 50 meV to plane-wave GW
band gaps from BerkeleyGW and VASP. Using lighter com-
putational settings, the average agreement is 70 meV, and a
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complete GW band structure calculation can be performed on
a laptop (Intel i5, 192GB RAM) in approximately 24 hours, or
in less than 30 minutes on 1024 HPC cores. Future extensions
of this work will combine the present GW algorithm with real-
space grids for G and W [50, 114, 115]. We expect this to sig-
nificantly reduce the number of required lattice summations,
further lowering the computational cost. The Gaussian basis
sets investigated in this work yield converged band gaps and
band structures within ∼ 100 meV. Developing Gaussian ba-
sis sets that enable convergence of periodic GW calculations
ideally within 10 meV is subject of ongoing work.

DATA AND CODE AVAILABILITY

Inputs and outputs of all calculations reported in this work
are available in a Github repository [116]. The algorithm pre-
sented in this work is available in the open-source package
CP2K [79, 80].
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APPENDIX

Appendix A: Derivation of Eq. (34) for computing χR
PQ(iτ)

For deriving the irreducible response χR
PQ(iτ) for a periodic

system, Eq. (34), we start from Eq. (3) and (2) for computing
χ for a molecule. For a molecule, we sum over the molec-
ular quantum number i and a for occupied and empty MOs
in Eq. (2). For a periodic system, the quantum numbers of
the one-electronic states are ik and ak labeling an occupied
and empty band at k-point k in the BZ. We thus replace and
abbreviate

occ

∑
i

→
∫

BZ

dk
ΩBZ

occ

∑
i

≃
occ

∑
ik

(A1)

empty

∑
a

→
∫

BZ

dk
ΩBZ

empty

∑
a

≃
empty

∑
ak

(A2)

so that we get from Eq. (3)/(2) for τ > 0 omitting the imagi-
nary prefactor:

χ(r,r′, iτ) = −
occ

∑
ik

ψ
∗
ik(r)ψik(r′)e−|(εDFT

ik −εF)τ|

×
empty

∑
ak

ψak(r)ψ∗
ak(r

′)e−|(εDFT
ak −εF)τ| (A3)

(17),(32)
= ∑

λR1µS1

[
∑
k

eik·(R1−S1)Gλ µ(−iτ,k)

]
φ

S1
µ (r)φ

R1
λ

(r′)

× ∑
σS2νR2

[
∑
q

eiq·(R2−S2)Gνσ (iτ,q)

]
φ

R2
ν (r)φ

S2
σ (r′)

(A4)

(23)
= ∑

λR1µS1

GR1−S1
λ µ

(−iτ) φ
S1
µ (r)φ

R1
λ

(r′)

× ∑
σS2νR2

GR2−S2
νσ (iτ) φ

R2
ν (r)φ

S2
σ (r′) . (A5)

We obtain the matrix element χR
PQ(iτ) from the projection of

χ(r,r′, iτ) in the RI basis {ϕR
P (r)}, incorporating the RI met-
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ric which is the truncated Coulomb operator (36):

χ
R
PQ(iτ) =⟨ϕ0

P|χ(iτ)|ϕR
Q ⟩ (A6)

=
∫

dr1 dr2 dr3 dr4 ϕ
0
P(r1)Vrc(r1,r2)

×χ(r2,r3, iτ)Vrc(r3,r4) ϕ
R
Q (r4) (A7)

= ∑
λR1

∑
µS1

∑
σS2

∑
νR2

GR1−S1
λ µ

(−iτ) GR2−S2
νσ (iτ)

× (µS1 νR2 |P0) (λR1 σS2 |QR) . (A8)

We replace S1→ R1−S1 and S2→ R2−S2 such that Eq. (34)
follows:

χ
R
PQ(iτ) = ∑

λR1

∑
µS1

∑
σS2

∑
νR2

GS1
λ µ

(−iτ) GS2
νσ (iτ)

× (µR1−S1 νR2 |P0) (λR1 σR2−S2 |QR) . (A9)

.
(µR1 νR2| P0) for all R1,R2∈ 3c, all µ,ν, P stored in every group
Compute+replicate GR

µν(iτ) for all R ∈SC, all µ,ν in every group
Set group-local χR

PQ(iτ) = 0 for all R ∈ SC, all P,Q
for ∆R in group-local {∆R} set do

Set group-local MλR1,νR2,P0 = 0 for all R1,R2∈ 3c, all µ,ν, P
Set group-local NλR1,νR2,Q0 = 0 for all R1,R2∈ 3c, all µ,ν,Q
for all R2 ∈ 3c do

R1 = R2 + ∆R
if R1 < 3c continue
for all S1 ∈ SC do

if R1 − S1 < 3c continue
! Group-local operation, first line in Eq. (31)
MλR1,νR2,P0 +=

∑
µ

(µR1−S1 νR2 | P0) GS1
λµ(−iτ)

end for
for all S2 ∈ SC do

if R2 − S2 < 3c continue
! Group-local operation, second line in Eq. (31)
NλR1,νR2,Q0 +=

∑
σ

(λR1 σR2−S2 |Q0) GS2
νσ(iτ)

end for
end for
for all R ∈ SC do

for all R2 ∈ 3c do
R1 = R2 + ∆R
if R1 − R < 3c continue
if R2 − R < 3c continue
! Group-local operation, outer summation in Eq. (31)
χR

PQ(iτ) +=
∑
λν

MλR1,νR2,Q0 NλR1−R,νR2−R,Q0

end for
end for

end for
sum up χR

PQ(iτ) contributions from all groups
.

FIG. 7. Pseudocode for computing χR
PQ(iτ) from Eq. (34).

Appendix B: Parallel implementation of Eq. (34) for
computing χR

PQ(iτ)

An efficient, low-memory parallel implementation of
Eq. (34) is a key for routinely executing the present algorithm.
We sketch our parallel implementation in the algorithm from
Fig. 7: The first main idea of the algorithm is to divide the N
MPI processes in groups with n MPI processes per group, i.e.,
the number of groups is N/n. We store all three-center ma-
trix elements (µRνS |P0) in every subgroup, i.e., the mem-
ory available to the subgroup needs to be sufficiently large to
fit all (µRνS |P0) elements. This is automatically guaranteed
as the program sets the group size n such that

n× avail. mem. per MPI proc. > mem. of (µRνS |P0) .

We execute all tensor operations from Eq. (34) group-locally
to avoid communication between all MPI processes. The sec-
ond main idea is to distribute the computations of Eq. (34) on
the different groups by distributing R1−R2=:∆R to different
subgroups. It turns out that with this distribution, communica-
tion between different groups is avoided; only the group-local
result for χR

PQ(iτ) needs to be summed up, see last line in the
algorithm from Fig. 7. We employ the set "3c" of lattice vec-
tors R which are the lattice vectors R with large three-center
integral (µRνS |P0), i.e.,

R ∈ 3c ⇔ there is S such that F[(µRνS |P0)]> δ , (B1)

where F denotes the Frobenius norm,

F[(µRνS |P0)] :=
√

∑
µνP

|(µRνS |P0)|2 , (B2)

and δ is the filter threshold. All other quantities of the algo-
rithm from Fig. 7 are defined in the main text. The three tensor
operations are executed by the sparse-tensor library dbt [117].

Appendix C: Periodic RI

For computing χR
PQ(iτ) from Eq. (34), the three-center in-

tegrals (µRνT|PR) are appearing. Moreover, in Eq. (39) the
metric matrix MPQ(k) is appearing. (µRνT|PR) and MPQ(k)
are stemming from the application of the resolution of the
identity (RI) [42, 45, 67]. In this Appendix, we give details
on RI with periodic boundary conditions.

In quantum chemistry, using Gaussian basis functions with-
out periodic boundary conditions, RI is expressed as

φµ(r)φν(r)≈ ∑
P

Bµν

P ϕP(r) , (C1)

where the product of two Gaussian functions φµ(r) and φν(r)
is approximated as a linear combination of auxiliary Gaussian
functions ϕP(r) with coefficients Bµν

P . Bµν

P are determined by
fitting procedures like least-squares minimization [67] to get
a good approximation in Eq. (C1).
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In the periodic case, the basis functions φ R
µ (r) and φ T

ν (r)
can be located in cell R and T. The RI expansion then uses
auxiliary Gaussians ϕP

P (r) in any cell P,

φ
R
µ (r)φ

T
ν (r)≈ ∑

PP
BµRνT

PP ϕ
P
P (r) . (C2)

We show in this Appendix that the expansion coeffi-
cients BµRνT

PP are determined by least-squares minimization
under a metric m(r) [67] as

BµRνT
PP = ∑

QQ
(µRνT |QQ)m (M−1)P−Q

PQ , (C3)

where (µRνT |QQ)m is the three-center integral of the met-
ric m(r) (Q is a lattice vector),

(µRνT |QQ)m =
∫

drdr′ φ
R
µ (r)φ

T
ν (r)m(r− r′)ϕ

Q
Q (r′) ,

(C4)

and

(M−1)R
PQ =

∫
BZ

dk
ΩBZ

e−ik·R M−1
PQ(k) (C5)

where M−1
PQ(k) are matrix elements of the inverse of the metric

matrix

MPQ(k) =∑
R

eik·R
∫

drdr′ ϕ0
P(r)m(r− r′)ϕ

R
Q (r

′) . (C6)

Note that we regularize M−1(k), Eq. (40), to prevent for lin-
ear dependencies and thus large expansion coefficients BµRνT

PP
with alternating sign in the RI expansion (C2).

In the following, we outline our proof of Eq. (C3). As in
non-periodic RI [67], we define the residual R of Eq. (C2),

R(r) = φ
R
µ (r)φ

T
ν (r)− ∑

PP
BµRνT

PP ϕ
P
P (r) . (C7)

Now, we vary the expansion coefficients BµRνT
PP in Eq. (C7) to

minimize the repulsion of R with itself in the metric m,

(R|R)m =
∫

drdr′ R(r) m(r− r′)R(r′)≥ 0 → min . (C8)

In the ideal case, we have R= 0 yielding zero repulsion of R
with itself. In the general case, we are looking for a minimum
of (R|R)m, i.e. we take ∂ (R|R)m/∂BµRνT

PP = 0 which gives

−2(µRνT |PP)m +2 ∑
QQ

BµRνT
QQ (QQ|PP)m = 0 (C9)

and thus

∑
QQ

BµRνT
QQ MP−Q

PQ = (µRνT |PP)m . (C10)

We insert

MP−Q
PQ =

∫
BZ

dk
ΩBZ

e−ik·(P−Q) MPQ(k) (C11)

into Eq. (C10), we multiply with eiq·P and we sum over all
lattice vectors P:

∑
QQ

BµRνT
QQ

∫
BZ

dk
ΩBZ

eik·Q MPQ(k)∑
P

ei(q−k)·P

= ∑
P

eiq·P(µRνT |PP)m . (C12)

We use ∑
P

ei(q−k)·P =ΩBZ δ (q−k),
∫

BZ
dk f (k)δ (q−k)= f (q)

and we multiply with the matrix M−1(q) to obtain

∑
Q

BµRνT
QQ eiq·Q = ∑

PP
eiq·P(µRνT |PP)m M−1

PQ(q) . (C13)

We then multiply with e−iq·Q′
, we integrate over the BZ (q)

and we use Eq. (C5) as well as∫
BZ

dq
ΩBZ

eiq(Q−Q′) = δQQ′ (C14)

(Q and Q′ are lattice vectors; δQQ′ is the Kronecker-δ ) to ob-
tain Eq. (C3).

Appendix D: Lattice sum of the Coulomb matrix element (41)

We compute the lattice sum (41),

VPQ(k) = ∑
R

eik·R (ϕ0
P|ϕR

Q ) , (D1)

(ϕ0
P|ϕR

Q ) =
∫

drdr′ ϕ0
P(r)

1
|r− r′|

ϕ
R
Q (r

′) , (D2)

by explicit summation of ∑R. Several schemes for executing
this lattice sum have been described, see Ref. [118], Appendix
of Ref. [71] and references therein.

We first note that the lattice summation in Eq. (D1) is
divergent if ϕ0

P and ϕR
Q are s-type basis functions in the

limit k→0. This is because (ϕ0
P|ϕR

Q )∼ |R|−1 and the lat-
tice sum ∑

R
(ϕ0

P|ϕR
Q )∼ ∑

R
|R|−1 (for k= 0) can be approxi-

mated as an integral
∫
Rd dR |R|−1 ∼

∫
∞

0 dRRd−1 R−1 which
diverges for dimensionality d = 1,2,3 (1d-molecular chains,
2d-materials or surfaces, 3d-bulk solids). More precisely,
the Coulomb matrix element VPQ(k) diverges at k→0 as
VPQ(k)∼ |k|−(d−1) for s-functions P,Q for d = 2,3 (for d = 1
the divergence is logarithmic). [74] The whole GW algo-
rithm is not divergent because this 1/kd−1 divergence is in-
tegrable in the Brillouin zone, see as an example Eq. (43):∫

BZ dk1/kd−1 ∼
∫ kmax

0 dk kd−1/kd−1, where kmax is deter-
mined by the Brillouin zone size.

The requirements for convergence of the lattice sum (D1)
have been extensively discussed in the literature [71, 118] and
references therein. We reproduce the arguments here to make
the discussion self-contained. We consider the lattice sum

VPρ(k) = ∑
T

eik·T (ϕ0
P|ρT) (D3)
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where T are lattice vectors and ρT(r)= ρ(r−T) where ρ(r)
is a function of r which decays exponentially or faster for
large |r|. The function ϕ0

P(r) is assigned to cell 0 and decays
exponentially or faster for large |r|.

The lattice sum (D3) is absolutely convergent for dimen-
sionality d = 1,2,3 if

kmin + lmin ≥ d (D4)

where 2kmin and 2lmin are the lowest nonvanishing dipole mo-
ments of ϕ0

P and ρT, respectively [118]. In our case, ϕ0
P can

be an s-type basis function, i.e., kmin = 0, so

lmin ≥ d (D5)

guarantees absolute convergence of the lattice sum (D3) for all
Gaussian basis functions ϕ0

P. Absolute convergence implies
that the order of T when executing the lattice sum Eq. (D3) is
irrelevant for the result.

Eq. (D5) means it is required for absolute convergence of
lattice sum (D3) for d = 1,2,3 that the function ρ(r) (and thus
ρT(r)) has zero monopole moment, i.e.,∫

R3

dr ρ
T(r) =

∫
R3

dr ρ(r) = 0 . (D6)

Additionally, for d = 2,3, all dipole moments of ρT need to
vanish, ∫

R3

dr rα ρ
T(r) =

∫
R3

dr rα ρ(r) = 0 . (D7)

Additionally, for d = 3, all quadrupole moments of ρT need
to vanish, ∫

R3

dr rα rβ ρ
T(r) =

∫
R3

dr rα rβ ρ(r) = 0 , (D8)

i.e., Eq. (D8) needs to hold for all combinations of
α,β = 1,2,3.

We apply this theorem to derive an absolutely convergent
expression for the lattice sum VPQ(k) [Eq. (41), reproduced
in Eq. (D1)], here illustrated for the case d = 2. An abso-
lutely convergent lattice summation is essential, as it guaran-
tees that the summation result is independent of the summa-
tion order. This is particularly important in numerical com-
putations, where the lattice sum must be truncated, thereby
imposing a specific summation order.

We start the derivation of an absolutely convergent lat-
tice summation by defining a (2N1)×(2N2) supercell "SC" as
sketched in Fig. 8. Here, N1 and N2 correspond to the N1×N2
Monkhorst-Pack k-point mesh [63] used for the BZ integra-
tion (43) of W . A lattice vector R belongs to SC if

R ∈ SC ⇔ R =
d

∑
j=1

n j a j , n j ∈ {0,1, . . . , 2N j −1} . (D9)

FIG. 8. Illustration of lattice vectors R and an examplary 8× 8 su-
percell SC, defined in Eq. (D9) (N1 =N2 = 4, i.e., the k-mesh for BZ
integration (43) is 4×4).

It is then easy to show that the sum of the phase factors eik·R

over the SC lattice vectors vanishes,

∑
R∈SC

eik·R = 0 (D10)

if k is contained in the N1×N2 Monkhorst-Pack k-point mesh
in case N1 and N2 are even integers (see Appendix E; in case
N1,N2 are both odd, the k-mesh contains the Γ-point k= 0
which violates Eq. (D10)).

Eq. (D10) motivates us to reorder the lattice sum (D1) using
the superlattice (SL) with lattice vectors T,

T ∈ SL ⇔ T = 2N1 t1 a1 +2N2 t2 a2 , (D11)

where each t1, t2 is integer. As illustrated in Fig. 8, we carry
out the infinite lattice sum (D1) by an infinite sum over the
superlattice SL:

VPQ(k) = ∑
T∈SL

∑
R∈SC

eik·(R+T) (ϕ0
P|ϕR+T

Q ) (D12)

≡ ∑
T∈SL

eik·T (ϕ0
P|ρT) (D13)

where

ρ
T(r) = ∑

R∈SC
eik·R

ϕ
R+T
Q (r) . (D14)

The benefit of lattice sum (D13) is that ρT has a zero
monopole moment,∫

R3

dr ρ
T(r) = ∑

R∈SC
eik·R

∫
R3

dr ϕ
R+T
Q (r)

= ∑
R∈SC

eik·R
∫
R3

dr ϕ
0
Q(r)

(D10)
= 0 , (D15)
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and zero dipole moments,∫
R3

dr rα ρ
T(r) = ∑

R∈SC
eik·R

∫
R3

dr rα ϕ
R+T
Q (r)

= ∑
R∈SC

eik·R
∫
R3

dr (rα −Rα −Tα)ϕ
0
Q(r−R−T)

+ ∑
R∈SC

eik·R Rα

∫
R3

dr ϕ
R+T
Q (r)+Tα ∑

R∈SC
eik·R

∫
R3

dr ϕ
R+T
Q (r)

(D10)
= 0 + ∑

R∈SC
eik·R Rα

∫
R3

dr ϕ
R+T
Q (r) + 0 = 0 , (D16)

where the last equality stems from:

∑
R∈SC

eik·R Rα = ∑
(Rα ,Rβ )∈SC

ei(kα Rα+kβ Rβ ) Rα

= ∑
Rα

eikα Rα Rα · ∑
Rβ

eikβ Rβ = 0 , (D17)

where we used

∑
Rβ

eikβ Rβ = 0 (D18)

as shown in Appendix (E), Eq. (E4). In general, one can eas-
ily extend this result and see that for a d-dimensional super-
cell, all moments of order k< d vanish if Eq. (D10) is veri-
fied. As such, it is a sufficient condition for the suppression of
the quadrupole (k= 2) moment for d = 3, which is condition
Eq. (D8), and therefore also guarantees the absolute conver-
gence of the three-dimensional lattice sum (D3). Comparing
Eqs. (D15) and (D16) to Eqs. (D7) and (D8) implies that the
lattice sum over T in Eq. (D12) is absolutely convergent, i.e.,
the result of the lattice sum (D12)/(D13) over T is independent
of the actual order of summation and we thus can truncate the
summation after a finite number of superlattice vectors T.

In practice, we check the convergence of the T sum by re-
stricting T from Eq. (D11) in lattice sum (D12) to

Tt1, t2 = 2N1 t1 a1 +2N2 t2 a2 , t j ∈ {0,±1, . . . ,±M} (D19)

leading to the lattice sum

VPQ(k) =
M

∑
t1, t2=−M

∑
R∈SC

eik·(R+Tt1 , t2) (ϕ0
P|ϕ

R+Tt1 , t2
Q ) (D20)

for k from the even N1×N2 Monkhorst-Pack k-point mesh.
Eq. (D20) is implemented in the code and can be converged
when increasing M. We define the size factor ∆ for Fig. 2 as:

M = 2∆−1 (D21)

We show in Appendix F that the lattice sum (D20) reproduces
the Coulomb integrals used in plane-wave GW algorithms.

Appendix E: Proof of Eq. (D10) and (D18)

The N1×N2 Monkhorst-Pack k-points (N1,N2 even) are

kℓ =
2

∑
j=1

ℓ j

2N j
b j , (E1)

where we define ℓ=(ℓ1, ℓ2) and ℓ j takes as value one of the
following odd integers

ℓ j ∈ {±1,±3, . . . ,±(N j −1)} . (E2)

b j are primitive translation vectors of the reciprocal lattice
with a j1 ·b j2 = 2πδ j1 j2 . Then

∑
R∈SC

eik·R (D9)
=

2N1−1

∑
n1=0

2N2−1

∑
n2=0

exp
[

i
(
ℓ1b1

2N1
+

ℓ2b1

2N2

)
· (n1a1+n2a2)

]

=
2N1−1

∑
n1=0

2N2−1

∑
n2=0

exp
[

2πi
(
ℓ1n1

2N1
+

ℓ2n2

2N2

)]

=
2N1−1

∑
n1=0

(
exp

πiℓ1

N1

)n1

·
2N2−1

∑
n2=0

(
exp

πiℓ2

N2

)n2

=
1−

(
exp πiℓ1

N1

)2N1

1− exp πiℓ1
N1

·
1−

(
exp πiℓ2

N2

)2N2

1− exp πiℓ2
N2

=
1− exp(2πiℓ1)

1− exp πiℓ1
N1

· 1− exp(2πiℓ2)

1− exp πiℓ2
N2

= 0 . (E3)

In the derivation, we have used ∑
N−1
n=0 qn =(1−qN)/(1−q). In

particular, this implies (D18) as for each β = 1,2 direction kβ

of any of the kℓ with ℓ= (ℓα , ℓβ ), we have:

∑
Rβ

eikβ Rβ =

2Nβ−1

∑
nβ=0

exp
[

i
(
ℓβ bβ

2Nβ

)
·
(
nβ aβ

)]

=
1− exp

(
2πiℓβ

)
1− exp

πiℓβ

Nβ

= 0 (E4)

Appendix F: Proof that absolutely convergent lattice sum (D20)
reproduces plane-wave GW Coulomb integrals

In this Appendix, we prove that the Coulomb matrix com-
puted from the lattice sum from Eq. (D20) gives the same
Coulomb matrix used in plane-wave GW . We start with the
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inverse Fourier transform of the Coulomb interaction,

∫
R3

dG
(2π)3

4π

G2 e−iG(r−r′) =

∞∫
0

dG
2π2

2π∫
0

dϕ

π∫
0

dθ sinθ e−iG|r−r′|cosθ

=

∞∫
0

dG
π

1
iG|r− r′|

(
eiG|r−r′|− e−iG|r−r′|

)

=
2

π|r− r′|

∞∫
0

dG
sin(G|r− r′|)

G
=

1
|r− r′|

. (F1)

For 2D systems, the Coulomb operator is truncated in the
non-periodic direction to eliminate artificial image interac-
tions [96] and all following steps are analogous.

We assume an absolutely convergent (a.c.) lattice sum for
the Coulomb matrix, like Eq. (D20), which we abbreviate as

VPQ(k) =
a.c.

∑
R

eik·R (ϕ0
P|ϕR

Q ) . (F2)

The absolutely convergent lattice summation allows us to in-
terchange the lattice summation and the integration,

VPQ(k) = (ϕ0
P|

a.c.

∑
R

eik·R
ϕ

R
Q ) . (F3)

Note that if the lattice sum is not absolutely convergent, we
cannot conclude Eq. (F3) from Eq. (F2) and the following
derivation does not hold.

For connecting the lattice sum (F3) to a plane-wave expres-
sion, we insert the Fourier transform of the Coulomb interac-
tion (F1) into Eq. (F3):

VPQ(k) =
∫
R3

∫
R3

drdr′ ϕ0
P(r)

1
|r− r′|

a.c.

∑
R

eik·R
ϕ

R
Q (r

′)

(F1)
=

∫
R3

dG
(2π)3

4π

G2

∫
R3

∫
R3

drdr′ ϕ0
P(r)e−iG(r−r′)

a.c.

∑
R

eik·R
ϕ

R
Q (r

′)

(F5)
=

∫
R3

dG
(2π)3

4π

G2 ϕ
∗
P(G)

a.c.

∑
R

eik·R
∫
R3

dr′ eiGr′
ϕ

0
Q(r

′−R)

=
∫
R3

dG
(2π)3

4π

G2 ϕ
∗
P(G)

a.c.

∑
R

eik·R
∫
R3

dr′ eiG(r′+R)
ϕQ(r′)

(F5)
=

∫
R3

dG
(2π)3

4π

G2 ϕ
∗
P(G)

a.c.

∑
R

ei(k+G)·R
ϕQ(G)

(F6)
=

∫
R3

dG̃
(2π)3

4π

G̃2
ϕ
∗
P(G̃)ϕQ(G̃)

rlv

∑
G

ΩBZ δ (G− (G̃+k))

(F7)
=

rlv

∑
G

1
Ω

4π

|G+k|2
ϕ
∗
P(G+k)ϕQ(G+k) . (F4)

In the course of deriving Eq. (F4), we have used the Fourier
transforms of the Gaussian basis functions

ϕP(G+k) =
∫
R3

dr ei(G+k)·r
ϕ

0
P(r) , (F5)

the identity

∑
R

eiG̃·R =
rlv

∑
G

ΩBZ δ (G− G̃) (F6)

(using the abbreviation rlv for a reciprocal lattice vector G; the
vector G̃ is arbitrary), and that the Brillouin zone volume ΩBZ
is connected to the unit cell volume Ω via

ΩBZ =
(2π)3

Ω
. (F7)

Note that Eq. (F4) has been used in Ref. [119] to compute
the Coulomb matrix element VPQ(k) of Gaussians P,Q.

Eq. (F4) is closely related to the Coulomb matrix in a plane-
wave basis, given by

VGG′(k) =
4π

|k+G|2
δGG′ , (F8)

which arises in plane-wave GW implementations. Eq. (F8)
and Eq. (F4) are connected via a basis transformation from the
plane-wave basis to the Gaussian basis. This shows that our
absolutely convergent lattice summation scheme (D20) yields
Coulomb matrix elements fully consistent with (F8), ensuring
compatibility with plane-wave-based GW implementations.

Appendix G: Derivation of Eq. (50) for computing Σ
c,R
λσ

(iτ)

For the derivation of Eq. (50), we review

Σnk(iτ) = ⟨ψnk|Σ(iτ)|ψnk⟩

=
∫

cell

dr
∫
R3

dr′ ψ∗
nk(r)Σ(r,r′, iτ)ψnk(r′)

= ∑
µν

C∗
µn(k)Σµν(k, iτ)Cνn(k) .

To arrive at the last line, which is Eq. (52), we have used the
basis expansion (17) and the k ↔ R transformation (51),

Σµν(k, iτ) =
SC

∑
R

eik·R
Σ

R
µν(iτ) . (G1)

We further have

Σ
R
µν(iτ) =

∫
drdr′ φ 0

µ(r)G(r,r′, iτ)W (r,r′, iτ)φ
R
ν (r′)

(A5)
= ∑

λS1,σS2

GS2−S1
λσ

∫
drdr′ φ 0

µ(r)φ
S1
λ
(r)W (r,r′, iτ)φ S2

σ (r′)φ R
ν (r′) .

(G2)

Inserting periodic RI (C2)/(C3) for the products φ 0
µ(r)φ

S1
λ
(r)

and φ
S2
σ (r′)φ R

ν (r′) into Eq. (G2) leads to Eq. (50).
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Appendix H: Spin-orbit coupling from HGH pseudopotentials

We employ spin-orbit coupling (SOC) from Hartwigsen-
Goedecker-Hutter (HGH) pseudopotentials [52, 54],

V̂ SOC(r,r′) = ∑
l

∆V SO
l (r,r′)

h̄
2

L · σ̂ (H1)

∆V SO
l (r,r′) =

3

∑
i, j=1

l

∑
m=−l

Ylm(θ ,ϕ) pl
i(r)kl

i j pl
j(r

′)Y ∗
lm(θ

′,ϕ ′)

(H2)

where V̂ SOC(r,r′) is the non-local SOC part to the HGH pseu-
dopotential, L=−ih̄r×∇r the angular momentum, σ̂ the
Pauli matrices, Ylm the spherical harmonics, r=(r,θ ,ϕ) are
spherical coordinates, pl

i(r) are tabulated Gaussian functions
and kl

i j are tabulated SOC parameters. We compute SOC ma-
trix elements in the Gaussian basis as

V SOC
µν ,σσ ′(k) = ∑

R
eik·R

∫
drdr′ φ 0

µ(r)⟨σ |V̂ SOC(r,r′)|σ ′⟩φ
R
ν (r′)

(H3)

where σ ,σ ′ ∈{↑,↓} is the spin quantum number along the z-
quantization axis. We compute the SOC matrix elements in
the Bloch basis,

V SOC
nn′,σσ ′(k) = ∑

µν

[Cσ
µn(k)]

∗ V SOC
µν ,σσ ′(k)Cσ ′

νn′(k) . (H4)

In principle, the SOC matrix V SOC
nn′,σσ ′(k) should be com-

puted between all states of the Bloch basis. However, we have
observed numerical instabilities originating from nonvanish-
ing pseudopotential overlaps between different atoms. We
found that this issue can be circumvented by restricting the
correction to an energy window EW around the valence band
maximum εVBM and the conduction band minimum εCBM, so
that we only include V SOC

nn′,σσ ′(k) for bands n,n′ at k that obey

ε
G0W0
nk ,ε

G0W0
n′k ∈ [εVBM −EW/2,εCBM +EW/2] . (H5)

We provide in Fig. 9 the evolution of the K-point split-
ting in PBE+SOC calculation with respect to this energy
window EW. We obtain a stable SOC splitting within 1-
2 meV for EW = 10 eV and EW = 20 eV, validating our ap-
proach (H5). For WSe2 with aug-DZVP-MOLOPT and
aug-TZVP-MOLOPT (Fig. 9h), we observe deviations of
more than 10 meV when increasing the energy window to
EW = 40 eV and EW = 100 eV, so that we chose a window of
20 eV for these calculations, and 40 eV for the other ones for
the SOC calculations reported in the main text.

We build the single-particle Hamiltonian with SOC,

hG0W0+SOC
nσ ,n′σ ′ (k) = δnn′ δσσ ′ ε

G0W0
nk +V SOC

nn′,σσ ′(k) . (H6)

We diagonalize hG0W0+SOC(k) to obtain the band structure
ε

G0W0+SOC
jk and coefficients C( j)

nσ (k) in a perturbative manner,

∑
n′σ ′

hG0W0+SOC
nσ ,n′σ ′ (k)C( j)

n′σ ′(k) = ε
G0W0+SOC
jk C( j)

nσ (k) . (H7)

To demonstrate the effects of this correction, we provide in
the following the PBE band structures of all monolayers with
and without SOC (Fig. 10). We observe that SOC splits the
top valence bands, predominantly at the K-point, in agreement
with the literature [9].

Appendix I: GW band gaps with plasmon-pole model
(BerkeleyGW)

In this Appendix, we present additional data of the band
gaps for the TMDCs benchmarked in this work using Berke-
leyGW (Table II). We compare the generalized plasmon pole
model (GPP) [93] with the full frequency implentation (data
of the full-frequency calculation is reproduced from Table I).

TABLE II. G0W0@PBE+SOC bandgap (in eV) using the plane-wave
code BerkeleyGW [55, 93, 94] of monolayer MoS2, MoSe2, WS2
and WSe2. The bandgap is extracted at the K point.

Calculation MoS2 MoSe2 WS2 WSe2

BerkeleyGW - GPP 2.53 2.12 2.53 2.13
BerkeleyGW - Full frequency 2.28 1.98 2.36 2.05
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FIG. 9. PBE+SOC K-point spin-orbit splitting as a function of the SOC energy window (Eq. (H5)) in monolayer MoS2 for non-augmented
MOLOPT (a) and augmented MOLOPT (b) basis sets, in monolayer MoSe2 (respectively (c) and (d)), in monolayer WS2 (respectively (e) and
(f)) and in monolayer WSe2 (respectively (g) and (h)). The computational details are provided in Sec. V C.
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