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I. COMPUTATIONAL DETAILS

Geometries. For our calculations, we considered the geometry of monolayer WSe2 with

an in-plane lattice parameter fixed to the experimental value of 3.289 Å [1, 2] with a Se-

Se distance of 3.277 Å. A vacuum separation of 15.9 Å was considered in the out-of-plane

direction to minimize interactions between periodic replicas.

Density functional theory

Quantum Espresso. We performed density functional theory (DFT) calculations us-

ing the Quantum Espresso package [3–5]. For the exchange-correlation functional, we

employed the non-empirical PBE generalized gradient approximation (GGA) [6]. Quan-

tum Espresso utilizes a plane-wave basis set, for which we set a kinetic energy cut-off of

90 Ry. Spin-orbit interaction was included by employing fully relativistic optimized norm-

conserving Vanderbilt pseudopotentials from the PseudoDojo library [7]. The self-consistent

charge density was converged on a 24× 24× 1 k-point grid.

WIEN2k. To validate and cross-check DFT calculations performed within Quantum

Espresso, we also performed DFT calculations using the all-electron full-potential imple-

mentation of WIEN2k[8], one of the most accurate DFT codes available[9]. We also employed

the PBE exchange-correlation functional, a k-grid of 30× 30× 1, and a self-consistent con-

vergence criteria of 10−6 e for the charge and 10−6 Ry for the energy. The core and valence

electrons are separated by −6 Ry. We used orbital quantum numbers up to 10 within the

atomic spheres and the plane-wave cutoff multiplied by the smallest radius of the muffin-tin

sphere is set to 8. The radius of the muffin-tin sphere considered are 2.41 bohr for W and 2.30

bohr for S. For the inclusion of SOC, core electrons are considered fully relativistically and

valence electrons are treated within a second variational step[10], with the scalar-relativistic

wave functions calculated in an energy window from −10 to 8 Ry.

We find that the resulting DFT gap for the monolayer case at the K point is 1263.0

(1283.4) meV obtained with WIEN2k (Quantum Espresso).

GW. We compute the quasi-particle energy spectrum within the GW approxima-

tion, using the BerkeleyGW package[11–14]. As a starting point, we use DFT energies

and wavefunctions computed with Quantum Espresso, then apply a one-shot non-self-

consistent GW calculation (G0W0)[15], employed using the spinor implementation within
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the BerkeleyGW package. This implementation includes non-perturbative spin-orbit

coupling corrections[11, 14, 16]. The dielectric function was computed using the generalized

plasmon-pole model of Hybertsen and Louie [15]. We used a 6 × 6 × 1 uniform q-grid,

including a total of 4000 empty and occupied states, and applied a 25 Ry cut-off for the

dielectric function. To accelerate convergence with respect to k-point sampling, we refined

the Brillouin zone sampling near q = 0 by incorporating 10 additional q-points within a

non-uniform neck subsampling scheme [17]. The Coulomb interaction was truncated along

the out-of-plane direction to prevent spurious coupling between periodic replicas [18]. We

find a GW gap at the K point for the monolayer of 2311.63 meV, which is 1028.23 meV

larger than the DFT gap.

BSE. The Bethe-Salpeter equation (BSE) was solved using the Tamm-Dancoff approx-

imation (see also Sec. IIA) within the BerkeleyGW package[11–14]. The electron-hole

interaction kernel matrix elements of the Bethe-Salpeter Hamiltonian were computed on

a uniform Monkhorst-Pack 24 × 24 × 1 coarse k-grid and subsequently interpolated to a

90 × 90 × 1 uniform fine k-grid, which was subsequently employed for the absorption and

g-factor calculations. An energy cut-off of 5 Ry was applied to the dielectric matrix in the

BSE electron-hole kernel matrix elements. The electron-hole kernel was computed including

24 bands (12 valence and 12 conduction). For the absorption calculations, a reduced set of

12 bands (6 valence and 6 conduction) was considered.

Orbital angular momentum matrix elements. Single-particle angular momentum

matrix elements were calculated extending previous work by the some of the authors[19–21],

see also Sec. II B. In the Quantum Espresso calculations, we included a summation over

600 occupied and empty bands and checked the convergence of the results with respect to

the total number of bands. For the calculation of the orbital angular momentum matrix

elements, we used DFT energies and performed a scissor-shift of the conduction bands using

the GW bandgap at the K point. In WIEN2k calculations, the energy window (−10 to 8

Ry) yields a total of 60 occupied and 1182 empty bands, enough to converge the orbital

angular momentum calculations[21, 22].
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Effective two-band model for excitons. The g-factors obtained within an effective

two-band model follow the approach discussed in Refs. [22, 23] and do not incorporate

off-diagonal terms neither in the single-particle nor in the exciton basis. Specifically, we

treat conduction and valence bands with a parabolic dispersion with effective masses given

by 0.2650 and −0.3519, respectively, obtained from the WIEN2k calculations. The exciton

wavefunctions are calculated considering the Rytova-Keldysh potential [24, 25] with an ef-

fective monolayer thickness of 6.55 Å and a dielectric constant of 15.6 [26]. The dielectric

constant of the surrounding dielectric environment is taken as ε = 1 to mimic air and ε = 5

to mimic hBN. The k-dependence of the X exciton g-factor has a convex dispersion with

minimum at the K valley (consistent with previous calculations[22, 23, 27, 28]) and can be

approximated by a parabola for gX(k) = g
(0)
X + g

(2)
X k2 with coefficients g

(0)
X = −4.12 and

g
(2)
X = 96.84 (these values include the scissor shift in the band gap, see also TableI). Within

this approach, the exciton g-factor, i.e., the single-particle parabolic dependence gX(k)

weighted by the exciton wavefunction F (k) from the two-band model (see also Eq. S12),

we found gX = 2Ã
R

dk k gX(k) |F (k)|2 = g
(0)
X + 2Ãg

(2)
X

R

dk k3 |F (k)|2. The numerical grid

used for the exciton energies and wavefunctions considers a circular region with radius 0.5

Å extracted from a 181×181 square grid from -0.5 Å to 0.5 Å, leading to 25445 effective

k-points. The binding energies for the 1s, 2s, 3s, and 4s states are 430.2 (131.2) meV, 186.5

(25.7) meV, 109.5 (10.2) meV, and 71.8 (5.8) meV, respectively, for ε = 1 (ε = 5).
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II. OPERATORS REPRESENTATION IN THE EXCITONIC BASIS

A. Preliminaries: basis set

In this work, we consider the ensemble of excitons {S} with energies {ΩS}, which are

obtained by numerically solving the BSE within the Tamm-Dancoff approximation[13] for a

finite number of conduction and valence quasi-particle bands. This equation is an effective

eigenvalue problem ĤBSE|Sð = ΩS|Sð, where the matrix elements of the Hamiltonian written

in the electron-hole basis read

ĤBSE
cvk;c′v′k′ = (Eck − Evk)¶c,c′¶v,v′¶k,k′ +Keh

vck;v′c′k′ . (S1)

Here, Eck (resp. Evk) are the quasi-particle energies of the conduction (resp. valence) bands,

Keh
vck;v′c′k′ = ïvck|K̂eh|v′c′k′ð are the matrix elements of the electron-hole interaction kernel.

It is understood that by employing this equation, each exciton state is expressed as the

coherent superposition of electron-hole pairs

|Sð =
X

vck

AS
vck|vkð|ckð, (S2)

where AS
vck is the exciton amplitude and |vkð|ckð is a short-hand notation for |vkð¹|ckð. In

other words, exciton states are spanned in the conduction-valence (or electron-hole) basis,

which belongs to the tensor product space Hex = He ¹ Hh. For simplicity in this work,

we only consider the case of direct excitons, assuming negligible coupling to phonons or

electrons and a vanishingly small momentum transfer coming from the absorbed light.

B. Angular momentum operators in the excitonic basis

We start our derivations by considering the exciton spin operators. The exciton spin

operator directed along the spatial direction ϵ̂, with ϵ = x, y, z, is defined as

Σ̂ϵ = Σ̂ϵ
e + Σ̂ϵ

h := Σ̂ϵ
e ¹ 11h − 11e ¹ Σ̂ϵ

h, (S3)

6



where the minus sign is related to the definition of the hole operator and we promoted

the single-particle operators in the electron and hole subspaces to combined electron-hole

Hilbert space by using a tensor product with the 2×2 identity operator, 11, in each respective

subspace. Each spin operator is a matrix, with its elements given in the Bloch basis, |³kð,
by

Σϵ
³³′k

= ï³k|Ãϵ|³′kð, (S4)

and measured in units of ℏ/2. Here, Ãϵ correspond to the Pauli matrices, with the following

representation

Ãx =





0 1

1 0



 , Ãy =





0 −i

i 0



 , Ãz =





1 0

0 −1



 . (S5)

Using Eq. S3, we can explicitly compute matrix elements of the operator in the excitonic

basis to find

ïS|Σ̂ϵ|S ′ð =
X

vck

"

X

c′

(AS
vck)

∗AS′

vc′kΣ
ϵ
cc′k −

X

v′

(AS
vck)

∗AS′

v′ckΣ
ϵ
vv′k

#

. (S6)

In the absence of degenerate excitonic subspaces, only the diagonal components of Eq. (S6),

ïΣ̂ϵðS := ïS|Σ̂ϵ|Sð would be necessary, thus, Eq. (S6) simplifies to

ïΣ̂ϵðS =
X

vck

"

X

c′

(AS
vck)

∗AS
vc′kΣ

ϵ
cc′k −

X

v′

(AS
vck)

∗AS
v′ckΣ

ϵ
vv′k

#

, (S7)

Furthermore, if the spin is a good quantum number at the single-particle level, so that all

the transitions are also spin-conserving and the single-particle spin operator is diagonal in

the Bloch basis, we find the simplified form

ïΣ̂ϵðS =
X

vck

|AS
vck|2(Σϵ

ck − Σϵ
vk), (S8)

where Σϵ
³k := Σϵ

³³k. This expression was already suggested in Ref. 29 when considering

the expectation value of the spin of non-degenerate excitons in the ẑ direction in Bi/SiC.

We also note that similar approaches to the one described here have recently been used to

investigate exciton effects on the shift current. [30]
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The orbital angular momentum can be decomposed in a analogous way to Eq. (S3).

For the single-particle states, we follow Ref. 19, and the matrix elements in the Bloch

basis of the (symmetrized) angular momentum operator (here we choose for simplicity the ẑ

direction, but the matrix elements in the x̂ and ŷ directions are obtained by a straightforward

permutation of indices) can be written as

Lz
³³′k

=
1

im0

"

X′

´ ̸=³

px³´kp
y
´³′k

− py³´kp
x
´³′k

ϵ³k − ϵ´k
−

X′

´ ̸=³′

py³´kp
x
´³′k

− px³´kp
y
´³′k

ϵ³′k − ϵ´k

#

, (S9)

where we employed units of Bz = µBBz. Here, the Bohr’s magneton is given by µB =

|e|ℏ/(2m0), Bz is the external applied magnetic field along ẑ, pϵ³´k corresponds to the matrix

elements of the canonical momentum in the Bloch basis and ϵ³k are the Kohn-Sham (or GW)

energies. The ′ symbol in the first (second) summation indicates that the ³′ (³) state must

be excluded if ³ and ³′ are in the same degenerate subset, leading to the equation

Lz
³³′k

=
1

imo

X

´ ̸=³,³′

"

px³´kp
y
´³′k

− py³´kp
x
´³′k

ϵ³k − ϵ´k
−

py³´kp
x
´³′k

− px³´kp
y
´³′k

ϵ³′k − ϵ´k

#

. (S10)

We note that expressions (S9) and (S10) naturally takes into account degenerate single-

particle states and can be derived within the context of the k.p perturbation theory or by

employing the relation between the position operator and the Berry connection [31–33].

Following the same steps as for the exciton spin, the excitonic matrix elements of the

angular momentum operator in the ϵ̂ direction simply read

ïS|L̂ϵ|S ′ð =
X

vck

"

X

c′

(AS
vck)

∗AS′

vc′kL
ϵ
cc′k −

X

v′

(AS
vck)

∗AS′

v′ckL
ϵ
vv′k

#

,

with Lϵ
³³′k

= ï³k|L̂ϵ|³′kð.

C. Generalized excitonic g-factor

We now define the operator ĝ := L̂+Σ̂, where we considered g0 ≃ 2, so that each compo-

nent of this vector operator is expressed in reduced units of Bϵ := µBBϵ. Straightforwardly

inherited from its angular momentum composition, and as shown in Sec. II B, the exciton
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g-factor is in general not diagonal in the excitonic basis. We can easily obtain the general

matrix elements once the angular momentum matrix elements are known,

ïS|ĝϵ|S ′ð =
X

vck

"

X

c′

(AS
vck)

∗AS′

vc′kg
ϵ
cc′k −

X

v′

(AS
vck)

∗AS′

v′ckg
ϵ
vv′k

#

, (S11)

with gϵ³³′k
= Lϵ

³³′k
+ Σϵ

³³′k
.

Importantly, this expression for the exciton g-factor generalizes the one employed in

previous works[20, 27], where degenerate exciton subspaces were not taken into consideration

and thus only the diagonal matrix elements, as well as only the out-of-plane ẑ direction,

ïĝzðS := ïS|ĝz|Sð, was considered,

ïĝzðS =
X

vck

|AS
vck|2(gzck − gzvk), (S12)

where gz³k = Lz
³k + Σz

³k.
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III. SYMMETRY ANALYSIS

The group theory nomenclature used here follows Ref. 34.

A. Zero magnetic field

The dipole matrix element mediated by the linear momentum operator between con-

duction (c) and valence (v) bands is given as pϵ
cv = ïc,±K|p · ϵ̂|v,±Kð. Within group

theory pϵ
cv = Γ∗

c · Γϵ · Γv, with Γc(v) being the irreps of conduction (valence) bands and

Γϵ is the irrep of the vector coordinate ϵ = x, y, z. The transition CB− → VB+ at K

(−K) yields K∗
8 ¹ K10 = K4 (K∗

7 ¹ K9 = K4), while CB+ → VB+ at K (−K) yields

K∗
7 ¹ K10 = K3 (K∗

8 ¹ K9 = K2). The irreps related to the in-plane circular polarization

(s±) are K2 ∼ x − iy, K3 ∼ x + iy and for out-of-plane linear polarization (z), the irrep is

K4 ∼ z.

B. Introducing the magnetic field

In transition metal dichalcogenide (TMDC) monolayers, the-low energy excitons with

zero-momentum (located at the Γ point) have the following irreducible representations (ir-

reps) within the D3h symmetry group:

Bright(A) ∼ Γ6 ∼ {x, y} → 2 dimensional,

Grey(G) ∼ Γ4 ∼ z → 1 dimensional,

Dark(D) ∼ Γ3 → 1 dimensional. (S13)

Based on symmetry considerations, we can derive the Hamiltonian for the Zeeman split-

ting for these low energy states. Specifically, the Hamiltonian term that couples to the

magnetic field reads:

ĤZ(B) = Ĥxx̂+ Ĥyŷ + Ĥzẑ, (S14)

with

Ĥϵ := ĝϵµBBϵ = ĝϵBϵ, (S15)

and where we remind that Bϵ := µBBϵ, with ϵ = x, y, z and µB is the Bohr magneton.
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The components of the magnetic field Hamiltonian transform as pseudo-vectors, i.e.:

{Hx, Hy} ∼ {Rx, Ry} ∼ Γ5

Hz ∼ Rz ∼ Γ2 . (S16)

By performing the direct product between the irreps of the excitons, we can immediately

reveal how the external magnetic field will couple the different exciton states. We find

A− A : Γ6 ¹ Γ6 = Γ1 · Γ2 · Γ6,

A−G : Γ6 ¹ Γ4 = Γ5,

A−D : Γ6 ¹ Γ3 = Γ5,

G−D : Γ4 ¹ Γ3 = Γ2, (S17)

which indicates that the A exciton subspace couples with B ∥ ẑ, that G and D excitons

couple with B ∥ ẑ, and that the A exciton couples with G and D excitons via B § ẑ.

Using this information, the Hamiltonian in Eq. (S14) reads in matrix form

HZ(B) =











gABz ¹MA gAGBxy ¹MAG gADBxy ¹MAD

0 gGDBz ¹MGD

c.c. 0











, (S18)

where gA is the A-exciton g-factor, gGD is the g-factor coupling G and D excitons, gAG

and gBD are g-factors that coupling A-G and A-D excitons, respectively. The matrices MA

(2× 2), MAG (2× 1), MAD (2× 1), and MGD (1× 1) incorporate complex values related to

the particular choice of the exciton basis. We emphasize that the most crucial information

given by the symmetry-based Hamiltonian is that B ∥ ẑ cannot mix A and G,D excitons.

This can only be achieved with in-plane (B § ẑ) fields.

Let us further elaborate on the choice of the basis set to the Hamiltonian S18. The
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symmetry relations for pseudovector operators acting on the states of Eq. S13 are given by




Γ1
6 |wz|Γ2

6

�

= −



Γ2
6 |wz|Γ1

6

�

,



Γ1
6 |wx|Γ3

�

=



Γ2
6 |wy|Γ3

�

,



Γ2
6 |wx|Γ4

�

= −



Γ1
6 |wy|Γ4

�

. (S19)

By choosing the basis set as
��

�Γ+
6

�

,
�

�Γ−
6

�

, |Γ4ð , |Γ3ð
	

(Γ±
6 relates to fully circularly po-

larization, s±), the Hamiltonian takes the form

HZ(B) =















+gABz 0 i³AGgAGB− ³ADgADB−

0 −gABz −i³AGgAGB+ ³ADgADB+

0 ³GDgGDBz

c.c ³∗
GDgGDBz 0















, (S20)

with B± = (Bx ± iBy) /
√
2. Note how the coefficients depend on the choice of basis. In the

numerical calculations within the GW-BSE formalism, we do not expect the Hamiltonian

to take such a intuitive form since the exciton basis will very likely a superposition of this

well-defined basis. Such “mixed” basis are not only restricted to GW-BSE calculations.

They are, in fact, a common outcome from first principles calculations whenever the bands

(or irreps) are degenerate (or nearly degenerate)[35–38].

At this point, the non-zero matrix elements allowed by symmetry (Eqs. S18 and S20)

provide the right functional form for the magnetic field dependence, which is particularly

relevant for fitting experimental data. However, the g-factor terms do not have a precise

meaning without a proper connection to the relevant energies and states that constitute each

exciton. In order to do so and provide a microscopic foundation for the symmetry-based

Hamiltonian, we can approximate the exciton states by the coefficient directly at the K
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valleys, as previously considered in other works[39–41]

|A+ð = |VB+, Kð |CB+, Kð ,

|A−ð = |VB+,−Kð |CB+,−Kð ,

|Gð = 1√
2
(|VB+, Kð |CB−, Kð+ |VB+,−Kð |CB−,−Kð) ,

|Dð = 1√
2
(|VB+, Kð |CB−, Kð− |VB+,−Kð |CB−,−Kð) . (S21)

To verify that this approximation to the full exciton states satisfies the symmetry con-

siderations of Eq. (S13), we can evaluate the optical selection rules given by the matrix

elements

ï∅ |p|Sð =
X

vck

AS
vck ïck |p| vkð , (S22)

where, |∅ð corresponds to the ground state (Fermi sea), S ∈ {A±, G,D} and AS
vck is the

exciton amplitude of the S-th exciton, solution of the BSE, see Eq. (S2).

The single-particle selection rules are given by

�

CB+,±K

�

�

�

�

p · (x̂± iŷ)√
2

�

�

�

�

VB+,±K

�

= µ

�

1± i√
2

�

,

(S23)

ïCB−,+K |p · ẑ|VB+,+Kð = |ïCB−,−K |p · ẑ|VB+,−Kð| = µz,

thus, it follows that the exciton selection rules are given by

|ïA± |p · ³̂| 0ð|2 =
�

�

�

�

�

CB+,±K

�

�

�

�

p ·
�

x̂± iŷ√
2

��

�

�

�

VB+,±K

��

�

�

�

2

,

= µ2. (S24)

|ïG |p · ³̂| 0ð|2 = 1

2
|ïCB−, K |p · ẑ|VB+, Kð+ ïCB−,−K |p · ẑ|VB+,−Kð|2 ,

=
1

2
|µz + µz|2 ,

= 2µ2
z . (S25)

13



|ïD |p · ³̂| 0ð|2 = 1

2
|ïCB−, K |p · ẑ|VB+, Kð− ïCB−,−K |p · ẑ|VB+,−Kð|2 ,

=
1

2
|µz − µz|2 ,

= 0, (S26)

with µ and µz differing by 2 orders of magnitude (µ k µz). It is important to emphasize here

that µz is rather small because of the small overlap between the wavefunctions with nearly

opposite spin, i. e., VB+ (nearly totally spin-up at K) and CB− (nearly totally spin-down

at K)[21].

Besides evaluating the dipole matrix elements for these excitonic transitions, we also

verify that this basis set satisfy the irreps of Eq. S13 with respect to the mirror plane

symmetry operation, Ã̂v (crossing the M points of the first Brillouin zone, as shown in Fig. 1

of the main text). By inspecting the character table of the D3h group for the mirror plane(s)

symmetry operation, we extract a character of 0 for the A excitons, 1 for the G exciton, −1

for the D exciton. The effect of Ã̂v on the exciton basis can be written as

Ã̂vA+ = A−, (S27)

Ã̂vA− = A+, (S28)

Ã̂vG = G, (S29)

Ã̂vD = −D, (S30)

in which the sign for the D exciton is directly connected to the sign change between K and

−K points, as given in Eq. S21, consequence of intervalley exchange coupling [41].

Let us now evaluate the exciton spin matrix elements for magnetic fields along z and along

x directions using Eqs. (S4) and (S6). For the subset |CB+,±Kð , |CB−,±Kð , |VB+,±Kð,
numerical evaluations within DFT give

Σz
K =











ÃCB+
0 0

0 ÃCB−
0

0 0 ÃVB+











, Σx
K =











0 ÃCB 0

ÃCB 0 0

0 0 0











, Σϵ
−K = −Σϵ

K (S31)

14



with the explicit matrix elements expressed as

ÃCB+
= ïCB+ |Ãz|CB+ð ,

ÃCB−
= ïCB− |Ãz|CB−ð ,

ÃVB+
= ïVB+ |Ãz|VB+ð ,

ÃCB =



CB+

�

�Ãx(y)

�

�CB−

�

. (S32)

The values obtained using Quantum Espresso and Wien2k are given in Table I.

In this basis, the exciton spin matrix elements in the ϵ = z direction are

ïS|Σ̂z|S ′ð =
h

(AS
VB+,CB+,+K)

∗AS′

VB+,CB+,+K − (AS
cVB+,CB+,−K)

∗AS′

VB+,CB+,−K

i

�

ÃCB+
− ÃVB+

�

+
h

(AS
VB+,CB−,+K)

∗AS′

VB+,CB−,+K − (AS
VB+,CB−,−K)

∗AS′

VB+,CB−,−K

i

�

ÃCB−
− ÃVB+

�

,

(S33)

S = S ′ ⇒ ïS|Σ̂ϵ|Sð =
h

�

�AS
VB+,CB+,+K

�

�

2 −
�

�AS
VB+,CB+,−K

�

�

2
i

�

ÃCB+
− ÃVB+

�

+
h

�

�AS
VB+,CB−,+K

�

�

2 −
�

�AS
VB+,CB−,−K

�

�

2
i

�

ÃCB−
− ÃVB+

�

, (S34)

Σ̂z =

















+ÃCB+
− ÃVB+

0 0 0

0 −ÃCB+
+ ÃVB+

0 0

0 0 0 ÃCB−
− ÃVB+

0 0 ÃCB−
− ÃVB+

0

















. (S35)

The exciton spin matrix elements for ϵ = x are

ïS|Σ̂x|S ′ð =
"

(AS
CB+,VB+,+K)

∗AS′

CB−,VB+,+K − (AS
CB+,VB+,−K)

∗AS′

CB−,CB+,−K

#

ÃCB

+

"

(AS
CB−,CB+,+K)

∗AS′

CB+,VB+,+K − (AS
CB−,VB+,−K)

∗AS′

CB+,CB+,−K

#

ÃCB, (S36)
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Σ̂x =
ÃCB√
2

















0 0 1 1

0 0 −1 1

1 −1 0 0

1 1 0 0

















. (S37)

We finally obtain the total Hamiltonian, Ĥ = ĤBSE + ĝ · B, including the zero field

diagonal part and a Zeeman term for a magnetic field along the the xz plane

H =

















Δ+ gAB cos ¹ 0 gAGB sin ¹ gADB sin ¹

0 Δ− gAB cos ¹ −gAGB sin ¹ gADB sin ¹

gAGB sin ¹ −gAGB sin ¹ ¶ gGDB cos ¹

gADB sin ¹ gADB sin ¹ gGDB cos ¹ 0

















. (S38)

with B = µBB. We have two limiting cases, ¹ = 0 ⇒ B = Bẑ and ¹ = 90◦ ⇒ B = Bx̂.

The exciton energy splittings can be fitted to our GW-BSE results, Δ = 54.8 meV and

¶ = 2.4 meV, and the g-factor values can be numerically calculated directly at the K-point,

gA = gCB+
− gVB+

= −2.1, gGD = gCB−
− gVB+

= −4.371, gAG = gAD = gCB/
√
2 = 0.847.

The (single-particle) band g-factors are obtained from theQuantum Espresso calculations

with a GW scissor shift operation[20], and they are given in Table I. In the same table, we

also compare the Quantum Espresso calculated values with WIEN2k to verify that both

DFT codes give very similar results.
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Table I. Numerical values for spin and orbital angular momenta. In parentheses, DFT indicates

that the operator was calculated using DFT energies, GW refers to a rigid scissor shift correction

using the GW band gap obtained at the K point, and SC denotes a rigid scissor shift of 1 eV. While

the values of σ and L in the z-direction are real within the calculations, they are complex for the

x, y directions due to the presence of (arbitrary) complex phases. However, for our purposes here,

it suffices to consider the absolute value.

VB+ CB− CB+ CB(xy)

QUANTUM σ 0.999 −0.917 0.977 0.973

ESPRESSO L (DFT) 5.348 2.040 3.134 0.209

g (DFT) 6.347 1.123 4.111 1.182

L (GW) 3.754 1.199 1.676 0.225

g (GW) 4.753 0.282 2.653 1.198

WIEN2k σ 0.999 −0.921 0.977 0.974

L (DFT) 5.310 1.962 3.140 0.064

g (DFT) 6.310 1.042 4.117 1.038

L (SC) 3.716 1.155 1.676 0.088

g (SC) 4.716 0.234 2.656 1.062
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IV. ADDITIONAL COMPUTATIONAL DATA

A. GW-BSE results of S ∈ {A±, G,D}

Table II we summarize the energies and oscillator strengths calculated with the GW-BSE

formalism.

Table II. Excitonic energies and oscillator strengths for the low-energy {S} = {A±, G,D} in

monolayer WSe2. Energy values are given in meV and oscillator strengths in units of e2a20. The

(bright-grey) A-G splitting is 52.4 meV while the (grey-dark) G-D splitting is 2.4 meV. This

subspace is well-separated of the other excitons, as the next exciton state is ∼ 164 meV above the

A exciton.

Exciton Energy |P+|2 |P−|2 |Pz|2 Irrep

A
1771.58 783.025 4771.892 –

Γ6
1771.52 4775.531 786.309 –

G 1719.14 – – 9.562 Γ4

D 1716.77 – – 0.001 Γ3

The numerical values of the spin matrices obtained via Eq. S6 and the orbital angular

momentum matrices obtained via Eq. S11 in the basis of S ∈ {A±, G,D} are shown below.

Despite the numerical hybridization of exciton states in the degenerate subspaces, the spin

and orbital matrices in the exciton basis fully satisfy the symmetry considerations, clearly

visible in the blocks with zero elements (between A and G/D for B ∥ z and within the A

and G/D blocks for B ∥ x, y).

Sigma-x =

[ 0.00+0.00j 0.00+0.00j 0.07+0.14j 0.03+0.07j]

[ 0.00+0.00j 0.00+0.00j -0.12+0.12j -0.03+0.04j]

[ 0.07-0.14j -0.12-0.12j 0.00+0.00j 0.00+0.00j]

[ 0.03-0.07j -0.03-0.04j 0.00+0.00j 0.00+0.00j]

Sigma-y =
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[ 0.00+0.00j 0.00+0.00j -0.15+0.07j -0.04+0.03j]

[-0.00+0.00j 0.00+0.00j -0.11-0.10j -0.05-0.06j]

[-0.15-0.07j -0.11+0.10j 0.00+0.00j 0.00+0.00j]

[-0.04-0.03j -0.05+0.06j 0.00+0.00j -0.00+0.00j]

Sigma-z =

[-0.04+0.00j -0.62+1.81j 0.00+0.00j -0.00+0.00j]

[-0.62-1.81j 0.04+0.00j -0.00+0.00j 0.00+0.00j]

[-0.00+0.00j 0.00+0.00j -0.02+0.00j -0.02-0.00j]

[ 0.00+0.00j -0.00+0.00j -0.02+0.00j 0.02+0.00j]

L-x =

[ 0.00+0.00j 0.00+0.00j -0.01-0.03j -0.01-0.02j]

[ 0.00+0.00j 0.00+0.00j 0.03-0.02j 0.01-0.01j]

[-0.01+0.03j 0.03+0.02j 0.00+0.00j 0.00+0.00j]

[-0.01+0.02j 0.01+0.01j 0.00+0.00j 0.00+0.00j]

L-y =

[ 0.00+0.00j 0.00+0.00j 0.03-0.02j 0.01-0.01j]

[-0.00-0.00j 0.00+0.00j 0.02+0.02j 0.01+0.01j]

[ 0.03+0.02j 0.02-0.02j 0.00+0.00j -0.00+0.00j]

[ 0.01+0.01j 0.01-0.01j 0.00+0.00j 0.00+0.00j]

L-z =

[-0.04+0.00j -0.65+1.90j 0.00+0.00j 0.00+0.00j]

[-0.65-1.90j 0.05+0.00j 0.00+0.00j -0.00+0.00j]

[ 0.00+0.00j -0.00+0.00j -1.24+0.00j -1.20-0.01j]

[ 0.00+0.00j 0.00+0.00j -1.20+0.01j 1.24+0.00j]
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V. ADDITIONAL FIGURES
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Fig. S1. Zeeman splitting of the A and D/G excitons as a function of the angle for different values

of magnetic field for (a) the BSE model and (b) the symmetry-adapted model.
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Fig. S2. Band composition of the exciton wavefunctions.
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Fig. S3. Exciton g-factor matrix
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Fig. S4. Oscillator strength for various excitonic states.
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Fig. S6. Density of the A, D, and G 1s–4s exciton wavefunctions.
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