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ABSTRACT: Solution-based single-molecule conductance measurements
of α,ω-bis(carboxylic acids) are conveniently performed using a high-
boiling-point nonconducting ethereal solvent. First-principles calculations
support experimental observations that linear oligoalkanes exhibit the
expected exponential decay of conductance with length, whereas junctions
comprising cyclic bridge hydrocarbons of different lengths and/or structures
exhibit a similar conductance.
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A central goal of molecular electronics is to develop
functional molecular-scale components that may one day

serve as nanoscale electronic circuit elements.1 To drive future
advances, a deeper understanding of the complex interplay
between electrode, linker group, and molecular backbone
properties and the impact of this relationship on charge
transport through metal−molecule−metal junctions is re-
quired. We focus here on carboxylic acids, well-recognized
linkers that facilitate the spontaneous formation of single-
molecule junctions from aqueous solutions2,3 or components
adsorbed/deposited on surfaces (Figure 1a).4−6 Their weakly

acidic character, hydrophilicity, and reactivity have enabled
studies exploring the pH-dependence of junction conduc-
tance,3,6,7 the use of electrochemically stabilized silver, copper,
and palladium electrodes,8−10 or the reversible formation of
ester-containing molecular circuits.5 However, the capacity of
bis(carboxylic acids) to generate extended hydrogen-bonding
networks in the solid state11 can limit their solubility in

commonly used electrically insulating scanning tunneling
microscope (STM) solvents. To date, only two single-molecule
conductance studies in such solvents have been reported: one
using tetradecane (TD), restricted to compounds containing a
single carboxylic acid,7 and one of bis(carboxylic acids) in
toluene.8

Here we report that nonconducting organic solvents
comprising oxygen functionalities can improve the solubility
of polar compounds of interest, presumably by disrupting
analyte−analyte intermolecular interactions. Critically, the use
of isochroman (IC; Figure 1b) enables conductance measure-
ments of α,ω-bis(carboxylic acids) with different backbones
using uncoated12 STM tips. These experimental studies,
supported by f irst-principles calculations of model junctions,
provide important new insights into the nature of charge
transport across the −AuOC(O)− interfacial contact.

We perform conductance measurements using the STM-
based break junction (STM-BJ) method (see the SI for more
details).13,14 This technique involves repeatedly pushing an
uncoated gold tip in and out of a gold substrate while applying
a voltage bias (Vbias) between these electrodes and measuring
the current (I) as a function of the tip−substrate displacement.
Step features observed in the resulting conductance (G = I/
Vbias)−displacement traces correspond to the formation of
Au−Au point contacts at close to integer multiples of 1 G0 (=
2e2/h) and molecular junctions at lower conductance (after
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Figure 1. (a) Schematic of molecular junctions formed from linear
oligoalkane α,ω-bis(carboxylic acids) bound between gold electrodes.
(b) Molecular structures of cyclic α,ω-bis(carboxylic acid) junction
components and isochroman, a high-boiling-point ethereal solvent.
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the addition of a suitable analyte in solution). Thousands of
these traces are compiled, without data selection, into 1D
conductance and 2D conductance−displacement histograms.
The resulting histogram features reveal the most probable
properties of the junctions studied.
The utility of four different high-boiling-point ethereal

solvents for STM-BJ studies was first evaluated using 4,4′-
bipyridine (bipy). Two solvents are cyclic ethers: IC (boiling
point (BP) ∼214 °C) and 2,3-dihydrobenzofuran (188 °C).
The other two are acyclic ethers: dioctylether (286 °C) and
cyclopentyl methyl ether (106 °C). Explicit molecular
structures for these compounds are provided in Figure S1a.
Each measurement provides histograms containing the
characteristic two-peak feature of bipy junctions, correspond-
ing to N lone pair−Au and pyridyl π−Au contact geometries,15

indicating that these solvents do not impede junction
formation (Figure S1b−e). The conductance of junctions
measured in these solvents typically lie between or above those
obtained from measurements in TD or 1,2,4-trichlorobenzene,
further indicating these new solvents only weakly interact with
the gold surface (Table S1).16,17 The low instrument noise
floor in these, and subsequent, measurements illustrate the
electrically insulating nature of these solvents; no significant
electrochemical currents are observed. We select IC for
additional studies given its moderate BP and mixed aliphatic-
aromatic structure, which we reason will help solubilize a wider
range of compounds.
We subsequently perform conductance measurements using

IC solutions of alkane α,ω-bis(carboxylic acids) (Cn, where n
is the number of carbon atoms between HOC(O)- linkers;
Figure 1a). We plot, in Figure 2, overlaid 1D histograms for

these diacids. All histograms contain a sharp peak feature
toward lower conductance, assigned to single-molecule
junctions. In each case, we also observe an additional peak
or shoulder at ∼2× the conductance of the first peak, which we
tentatively attribute to the formation of junctions with two
molecules in parallel. These distinct features are also clearly
observed in the corresponding 2D histograms and individual
conductance−displacement traces (Figure 2b and S2). A
semilog plot of the most probable conductance for each single-
molecule junction against n shows that these values exhibit an
exponential length dependence indicative of tunneling trans-
port (Figure 2, inset). We obtain a tunneling decay constant
(β) of 0.90/n and a contact conductance (Gc) of 7.2 × 10−3 G0
from a linear fit to this data using G = Gc·exp(−βn). This β is
consistent with values obtained for other series of oligoalkanes

with different linker groups, and the low Gc (e.g., relative to 4.8
× 10−2 G0 for −SMe), attributed to the additional carbon atom
in the linker group, also agrees well with previous
reports.3,7,8,18 Conductance data for all diacid junctions are
provided in Table S2. Additional discussion regarding studies
of ethanedioic acid (C0) in IC, and C6 introduced using
different methods, is provided in the SI.

We next evaluate the conductance of junctions formed from
α,ω-bis(carboxylic acids) comprising cyclic 1,4-phenylene (Ph,
n = 4), 1,4-cyclohexane (Cy, n = 4), and 1,4-xylylene (Xy, n =
6) backbones (for molecular structures, see Figure 1b). Here,
values of n indicate the number of carbon atoms between
linkers through a single branch of the backbone ring. In Figure
3a we plot overlaid 1D conductance histograms for these cyclic

diacids, in which we again typically observe two overlapping
peaks characteristic of one and two molecular junctions.
Surprisingly, while their hydrocarbon bridges differ in the
number and structure (aliphatic, aromatic) of carbon atoms,
these diacid junctions each exhibit a conductance within a
factor of 1.1 from each other and between 60% and 68% of the
conductance of C4 (Table S2). Repeated measurements of
these analytes highlight the reproducibility of this result
(Figure S3a−c). Our findings contrast with the ∼10× higher
conductance reported for Ph compared to Xy junctions
formed using copper electrodes,19 although the conductance
data obtained for Ph in that study included additional peak
features at lower conductance.

To provide additional insights into the electronic properties
of these junctions, we turn to f irst-principles calculations based
on density functional theory (DFT; see the SI for further
details and extended discussion). Each contact is initially
modeled in Au1 cluster junctions using a κ1 (O-monodentate)
coordination mode. This geometry is observed in molecular
structures of Au(I)−carboxylate complexes determined from
single-crystal X-ray diffraction (although Ag(I) and Cu(I)
complexes with κ2 (O,O-bidentate) or bridging coordination
geometries are known).20 Given that rotations about the
unconstrained and sterically unimpeded single bonds in each
system (e.g., AuOC(O)-aryl) are expected to be soft degrees of
freedom,16,21 we performed geometry optimizations of each
junction using input structures with different dihedral angles
(Figure S5).

In Figure 3b we plot illustrative optimized geometries for
Ph-Au1, Cy-Au1, and Xy-Au1, which support a qualitative
rationalization of the measured conductance for these

Figure 2. (a) Overlaid 1D histograms for Cn measured in IC (Vbias =
250 mV, 5000 traces). Inset: plot of the experimental single-molecule
conductance against n (β = 0.90/n). (b) 2D histogram for C6.

Figure 3. (a) Overlaid 1D histograms for measurements of Ph, Cy,
and Xy in IC (Vbias = 250 mV, ≥5000 traces). (b) Au1-cluster junction
geometries that provide the highest tunnel couplings for each system.
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junctions. For Cy, transport is through a sp3-hybridized n = 4
backbone, providing a similar but lower conductance
compared to C4. This conductance ordering may be
rationalized given that the structural constraints of the
cyclohexane group ensure the alkane chain between each
linker cannot adopt a more conductive all-trans configura-
tion,22 and transmission through this cyclic hydrocarbon
backbone may be further reduced through destructive σ-
interference effects.23 Transport through conjugated phenylene
backbones may be expected to be more efficient than that
through nonconjugated alkanes due to their smaller HOMO−
LUMO gaps that better align frontier orbitals with the
electrode Fermi level (EF). However, we note that the
geometry of the carboxylic acid linker in Ph orients the Au−
O bond into the plane of the benzene group, perpendicular to
the conjugated p-orbitals of the ring. This reduces electronic
coupling between the delocalized backbone π-system and the
electrode, forcing transport through the sp2-hybridized σ-
framework.24 For Xy it is possible to access junction
geometries that better align the terminal AuOC(O)− groups
with the conjugated phenylene backbone, apparently providing
a junction conductance comparable to those of Ph and Cy
despite the longer, n = 6, conduction path.
We apply these and additional Au1 cluster junctions to

calculate tunnel couplings (4t2), a metric that correlates well
with experimental conductance.25,26 For these neutral carbox-
ylate-linked models, we obtain 2t from the energy difference
between LUMO and LUMO+1 (see Computational Methods
in the SI for justification), which provides the expected
symmetric and antisymmetric orbital pair exhibiting Au s-O p-
antibonding character (Figure 4a; analogous orbitals are
provided for other junctions in Figure S7).21 We validate our

approach by plotting, in Figure 4b, 4t2 versus n for Cn-Au1
models.25 From a linear fit to these data, substituting G = 4t2
into G = Gc·exp(−βn), we obtain β = 0.86/n, in good
agreement with our experimental result (Figure 2a). In Figure
4b, we also overlay the largest tunnel couplings obtained from
all of the geometries evaluated for Ph-Au1, Cy-Au1, and Xy-Au1
junctions (corresponding to the geometries in Figure 3b).
While the tunnel coupling for each system is clearly dependent
on its conformation (Table S4), the similarity of each of these
maximum couplings to each other, and to the value found for
C4-Au1, supports our experimental finding that junctions
formed from this series of molecules can exhibit a similar
conductance. The potential energy landscapes of these
junctions could be explored in future studies to evaluate the
relative probabilities and thermal population of each
conformation.

To further rationalize these findings, in Figure 4c we plot
overlaid calculated transmission functions for C4, Ph, Cy, and
Xy junctions with the same (frozen) geometries used to
calculate 4t2 in Figure 4b. These quantum transport
calculations are performed within the framework of DFT and
the nonequilibrium Green’s function (NEGF) formalism using
FHI-aims27 combined with the AITRANSS transport module
(see the SI for additional details).28−31 Our calculations
support the conclusions obtained from the tunnel coupling
analysis, with each junction exhibiting similar zero-bias
conductance due to strong EF pinning to the HOMO. In
this sense, transport is dominated by weakly coupled occupied
orbitals, and no significant midgap states32 are observed for
these chemisorbed Au−O contacts. Analogous calculations for
fully relaxed junctions exhibit qualitatively similar features (see
Figure S9 and the associated discussion). Interestingly, both
tunnel coupling and transmission calculations reveal that the
conductance of C4 junctions varies by only a factor of 3−4
when both carboxylates are contacted through κ1 or κ2

coordination modes (Figure 4c and Tables S4 and S5), in
agreement with previous studies focused on junctions with
only a single carboxylate linker. We suggest that both modes
are experimentally accessible and contribute, along with
changes in the backbone geometry, to the width of the
conductance peaks observed.

Independent of the precise coordination geometry, these
linker groups are widely considered to bind in junctions as
carboxylates (−COO−).3,7 The apparently spontaneous
deprotonation of −COOH upon binding to gold is a process
that is also important for thiols33 and terminal alkynes,34

although the larger pKa of the alkyne C−H group may suggest
a distinct deprotonation mechanism (pKa

DMSO: PhCO2H =
11.1, PhSH = 10.31, PhCCH = 28.7).35 Inspired by their
plausible κ1 coordination mode, we propose that carboxylic
acids could be considered simply as −OH linkers comprising
an acidic proton. While −OH groups have to date scarcely
been explored as junction linkers, they may yet be widely
utilized after deprotonation with an appropriate base (as
recently reported for phenol)36 or at a metal surface after
incorporating adjacent chemical functionality that lowers their
pKa. Such contact chemistries could prove useful for forming
junctions with oxophilic metal electrodes,37 or to evaluate in
situ chemical reactions thought to result in alkoxide-terminated
junctions.38

Together, the results of this study motivate additional
investigations using IC or related solvents to probe the
properties of carboxylic acid-linked single-molecule junctions.

Figure 4. (a) Isosurface plots (isovalue of 0.06 Å−3) of the tunnel-
coupled LUMO and LUMO+1 orbitals for C4-Au1. (b) A plot of the
calculated tunnel couplings for Cn-Au1 against n (β = 0.86/n),
overlaid with the largest tunnel coupling for Ph-Au1, Cy-Au1, and Xy-
Au1 (all κ1). (c) (Left) Overlaid transmission calculations for selected
junctions, comprising the same (frozen) geometries used to calculate
4t2 in panel (b). (Right) The different contact geometries evaluated
with C4 junctions.
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We note our approach may be expanded to characterize other
families of compounds with polar or charged36 backbones/
contact groups. By substituting polar solvents with non-
conducting analogues that can perform a similar solubilizing
function, we greatly simplify STM-BJ experiments that
typically otherwise require coated STM tips to minimize
background electrochemical currents.12 This may prove
valuable for glovebox-based STM-BJ studies useful for
investigations of air-sensitive electrode metals38 and mole-
cules,39 in which the frequent use of coated STM tips would
likely present a substantial experimental burden.
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