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We list further computational parameters underlying our calculations (Sec. S1). The regularized resolution
of the identity used in the GW algorithm is defined (Sec. S2). We further show the numerical convergence of
our benchmark monolayer band gaps (Sec. S3, S4). We discuss the resolution of the identity with the truncated
Coulomb metric in Sec. S5. We compare the periodic, low-scaling GW algorithm from the manuscript to a
GW algorithm with standard scaling (Sec. S6). We also report and discuss the number of required floating
point operations in our low-scaling Gaussian algorithm, a standard-scaling Gaussian algorithm and in plane-
wave algorithms (Sec. S7 – S11). Timings of our algorithm are reported in Sec. S12. We compare the supercell
convergence of our algorithm to the supercell convergence of stochastic GW in Sec. S13.

S1. COMPUTATIONAL DETAILS

The algorithm is implemented in the CP2K software package1,2. Unless otherwise noted, we use the TZVP-MOLOPT basis
set1 together with Goedecker-Teter-Hutter pseudopotentials3 (charge qMo = qW =+14e and qS = qSe =+6e). Exemplarily, the
TZVP-MOLOPT basis set contains 35 basis functions per Mo atom (4× s, 3× p, 3× d, 1× f) and 17 basis functions per S atom
(3× s, 3× p, 1× d). As auxiliary basis, we use the relevant exponents from the RI-def2-SVP basis set4. Inputs and outputs are
available on github5. We use a regularized resolution of the identity with regularization parameter 10−2, see Sec. S2 for details.

We use a 4×4 and 6×6 Monkhorst-Pack k-point mesh6 when calculating χ(k), ϵ(k),V(k),Vrc (k),W(k). We use an 8× 8
k-point mesh for the GW self-energy. We compute three-center integrals of the truncated Coulomb integrals using the libint
library7. Two-center integrals are computed using solid harmonic Gaussians8. We use minimax grids9,10 with ten grid points for
the Fourier transform in imaginary time and imaginary frequency. We employ the dbcsr tensory library11,12 to execute parallel
sparse matrix-tensor operations when computing χ and Σ.

For the plane-wave code benchmarks, the DFT calculations were performed using the Quantum Espresso package13, with
the PBE exchange-correlation functional14 and norm-conserving non-relativistic pseudopotentials15. A basis cut-off of 100 Ry
was employed, and the self-consistent charge density was converged on a 30 × 30 × 1 k-grid with a total energy accuracy of
10−9 Ry. To determine the quasi-particle band-gap, a one-shot GW calculation (G0W0) was conducted using the BerkeleyGW
package16,17. The Quantum Espresso DFT converged energies and Kohn-Sham states were used as the starting point. The
dielectric matrix was computed with a dielectric cut-off of 25 Ry, considering a total of 1999 occupied and empty bands on a
12 × 12 × 1 uniform k-grid. For the explicit full-frequency calculation, we employed the contour-deformation method with the
Adler-Wiser formula. In order to accelerate convergence near the Γ-point (|q| → 0), a non-uniform neck subsampling approach
was also considered18. The spurious interactions between periodic replicas in the perpendicular direction to the surface were
removed with a Coulomb interaction truncation scheme19.

The heterobilayers were created with the CellMatch code20, implementing the coincidence lattice method21,22.

S2. REGULARIZED RESOLUTION OF THE IDENTITY

In this section, we describe the regularization method in the resolution of the identity (RI) that we use in the GW algorithm.
We show that the regularization accelerates the convergence of the GW bandgap with the supercell size.

RI starts from four-center Coulomb integrals (4c-CI)23,

(ϕµϕν|ϕλϕσ) :=
∫

dr dr′ ϕµ(r) ϕν(r)
1

|r − r′|
ϕλ(r′) ϕσ(r′) , (S1)

where ϕµ, ϕν, ϕλ and ϕσ are atomic-orbital (AO) Gaussian basis functions. In RI, one expands the Gaussian products ϕµ(r)ϕν(r)



and ϕλ(r′)ϕσ(r′) using an auxiliary basis {φP(r)},

ϕµ(r)ϕν(r) =
∑

P

BP
µν φP(r) . (S2)

BP
µν are expansion coefficients that will be chosen to approximate ϕµ(r)ϕν(r). RI is used together with a metric m(r, r′),23–25

for example the Coulomb metric, m(r, r′)= 1/|r− r′| or the overlap metric m(r, r′)= δ(|r− r′|). The expansion coefficients BP
µν

depend on m(r, r′) and are chosen, such that the following expression gets minimal:23

(
ϕµϕν −

∑
P

BP
µν φP

∣∣∣∣ϕλϕσ −∑
P

BP
λσ φP

)
m

:=
∫

dr dr′
[
ϕµ(r)ϕν(r) −

∑
P

BP
µν φP(r)

]
m(r, r′)

[
ϕλ(r′)ϕσ(r′) −

∑
P

BP
λσ φP(r′)

]
(S3)

= (ϕµϕν|ϕλϕσ)m − 2
∑

P

BP
µν(ϕµϕν|φP)m +

∑
PQ

BP
µνB

Q
λσMPQ . (S4)

The two- and three center integrals appearing in Eq. (S4) are defined as

(ϕµϕν|φP)m ≡ (φP|ϕµϕν)m =

∫
dr dr′ ϕµ(r)ϕν(r) m(r, r′) φP(r′) , (S5)

MPQ ≡ (φP|φQ)m =

∫
dr dr′ φP(r) m(r, r′) φQ(r′) . (S6)

Differentiating Eq. (S4) with respect to BP
µν and setting the result to zero leads to the RI expansion coefficients,23

BP
µν =

∑
Q

(
M−1

)
PQ

(ϕµϕν|φQ)m . (S7)

M−1 is the inverse of matrix M that is defined in Eq. (S6). Inserting Eq. (S7) into Eqs. (S2)/(S1), one obtains the equation that
is used to replace four-center Coulomb integrals by two-center and three-center integrals,

(ϕµϕν|ϕλϕσ) =
∑

PQRT

(ϕµϕν|φP)m

(
M−1

)
PQ

VQR

(
M−1

)
RT

(φT |ϕλϕσ)m , (S8)

where the two-center Coulomb matrix is

VPQ =

∫
dr dr′ φP(r)

1
|r − r′|

φQ(r′) . (S9)

In practical calculations, the RI basis {φP} is large. This leads to linear dependencies in the RI basis which results in large
inverse matrix elements M−1

PQ and thus large expansion coefficients BP
µν. In this work, we regularize Eq. (S3)/(S4), i.e. we

minimize (
ϕµϕν −

∑
P

BP
µν φP

∣∣∣∣ϕλϕσ −∑
P

BP
λσ φP

)
m
+ α2

∑
P

(BP
µν)

2 , (S10)

where α≥ 0. Differentiating Eq. (S10) with respect to BP
µν and setting the result to zero leads to

BP
µν =

∑
Q

(
(M + α Id)−1

)
PQ

(ϕµϕν|φQ)m , (S11)

where Id is the identity matrix.
In the algorithm described in the manuscript, we incorporate the regularized RI (S11), by inverting the matrix M(k)+αId to

calculate the matrix denoted as M−1(k),

M−1(k) B
(
M(k)+αId

)−1
. (S12)

We chose α= 10−2 for all calculations in the manuscript. In Fig. S1, we show that the G0W0 band gap of MoS2 converges
relatively fast with the supercell size when choosing α= 10−2 (blue traces) compared to α= 10−3 (green traces) and to standard RI
(α= 0, brown traces). An even larger regularization α= 10−1 hampers the RI expansion (S11); we observe that the G0W0@LDA
band gap deviates by 0.03 eV for large cells compared to the G0W0@LDA band gap computed with smaller regularization
parameters α.
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FIG. S1. G0W0@LDA gap for MoS2 as function of the supercell size for three values of the RI regularization parameter α∈ {0, 10−3, 10−2, 10−1}

[α enters the GW algorithm via Eq. (S12)].

S3. CONVERGENCE WITH THE BASIS SET SIZE

We investigate how the G0W0@PBE bandgap of monolayer MoS2, MoSe2, WS2 and WSe2 converges with the basis set {ϕν}
for Bloch states and the auxiliary basis set {φP} from the resolution of the identity (RI), see Table S1. We also change the
supercell size and the number of time and frequency points25. For Table I in the manuscript, we report the bold G0W0@PBE
bandgap (10×10 supercell, 30 time/frequency points, TZV2P-MOLOPT basis set). Further investigating and improving the
numerical convergence with the basis set size, supercell size and the time/frequency grid, will be subject of future work.

TABLE S1. G0W0@PBE bandgap of a monolayer MoS2, MoSe2, WS2, and WSe2 for various different numerical parameters. We abbreviate
”RI standard” for a standard RI basis set (example: 159 RI basis functions per MoS2 unit), ”RI big” (225 RI basis functions per MoS2 unit)
and ”RI huge” (316 RI basis functions per MoS2 unit). The TZVP-MOLOPT and the TZV2P-MOLOPT basis sets are standard basis sets1,26

used together with Goedecker-Teter-Hutter pseudopotentials3. As an example, the TZVP-MOLOPT-GTH basis set contains 35 Gaussians per
Mo atom (4× s, 3× p, 3× d, 1× f functions) and 17 Gaussians per S atom (3× s, 3× p, 1× d functions). Inputs and outputs are available on
github5.

Gaussian basis: TZVP-MOLOPT1,26 Gaussian basis: TZV2P-MOLOPT1,26

Supercell Time/freq. grid points RI standard RI big RI huge RI standard RI big RI huge
MoS2 10×10 10 2.459 2.538 2.510 2.455 2.560 2.511

11×11 10 2.451 2.483 2.446 2.493
12×12 10 2.456 2.462 2.451
10×10 20 2.493 2.476
10×10 30 2.486 2.471

MoSe2 10×10 10 2.045 2.029 2.047 2.053 2.043 2.054
11×11 10 2.047 2.051 2.054 2.058
10×10 20 2.079 2.074
10×10 30 2.077 2.071

WS2 10×10 10 2.796 2.786 2.787 2.793 2.782 2.771
11×11 10 2.798 2.786 2.788 2.784
10×10 20 2.800 2.814
10×10 30 2.814 2.812

WSe2 10×10 10 2.365 2.350 2.355 2.347 2.333 2.336
11×11 10 2.368 2.354 2.344 2.338
10×10 20 2.381 2.362
10×10 30 2.378 2.367
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S4. ADDITIONAL CONVERGENCE CHECKS

In Fig. S2, we present additional convergence checks of the GW bandgap with the minimax time/frequency grid size, the
k-point mesh size, the filter parameter of sparse tensor operations, and with the box height.
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FIG. S2. Convergence tests of the low-scaling GW algorithm for a 7×7 supercell of MoS2. We benchmark the convergence of the G0W0 gap
as function of the following convergence parameters: (a)/(b) number of time/frequency points, (c)/(d) k-point mesh size, (e)/(f) filter parameter
of sparse tensor operations and (g)/(h) box height. Shown are the bandgap (left column) and the computation time (right column). Standard
settings in the manuscript are 10 time/frequency points, a 4×4 / 6×6 k-point mesh, a filter 10−6 and 15 Å box height.
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S5. CUTOFF RADIUS OF THE TRUNCATED COULOMB METRIC FOR THE RESOLUTION OF THE IDENTITY

The choice of the RI metric m(r, r′) is crucial for making the low-scaling GW algorithm from the manuscript efficient. One
possibility is the overlap metric23,25,27,

m(r, r′) = δ(r − r′) (S13)

where δ is the Dirac distribution. The overlap metric is space-local in the sense that the auxiliary Gaussian basis functions φP do
not overlap with atomic-orbital basis function products ϕµϕν in Eq. (S5) if there is enough distance between their centers. This
leads to vanishing three-center overlap matrix elements (µν|P)m and increasing computational efficiency due to sparsity.

In contrast, the Coulomb metric

mC(r, r′) =
1

|r− r′|
(S14)

couples RI basis functions φP and Gaussians basis function pairs ϕµϕν in Eq. (S5) over effectively infinite distances due to the
slow polynomial decay of 1/|r− r′|. With the Coulomb metric, no sparsity can be gained hampering its usage in low-scaling GW
algorithms. In standard O(N4) algorithms, each Gaussian ϕµ, ϕν is transformed to the delocalized molecular orbital basis {ψn}

loosing all sparsity anyway28. In such a conventional algorithm, where sparsity cannot be exploited, the Coulomb metric is the
optimal choice because the RI factorization given in Eq. (S8) converges very quickly with respect to the RI basis set size.23 The
Coulomb metric thus yields generally higher accuracy than the overlap metric.

In this work, we employ the truncated Coulomb metric24,25,29

mrc (r, r
′) =


1

|r − r′|
. if |r − r′| < rc ,

0 else ,

(S15)

where the Coulomb interaction is cut after a distance rc. In the limit of a large cutoff radius rc, the truncated Coulomb metric turns
into the Coulomb metric, lim

rc→∞
mrc (r, r′)= 1/|r − r′|. For a small cutoff radius rc, calculations based on the truncated Coulomb

metric are equivalent to calculations based on the overlap metric. The truncated Coulomb metric combines the attractive features
of the Coulomb metric and the overlap metric: high accuracy due to the near-sighted Coulomb operator and preservation of
sparsity due to the locality of mrc (r, r′). The RI factorization in Eq. (S8) is exact in the limit of a complete RI basis, independent
of the chosen RI metric. Therefore, truncating the Coulomb operator with a finite rc does not affect the accuracy of the GW
algorithm as long as the RI basis is sufficiently large.

We show the convergence of the G0W0 bandgap of MoS2 with the RI basis set size {φP(r)} in Fig. S3. It is seen that the
convergence with the RI basis is fast when using a cutoff radius a cutoff radius rc = 3 Å, and the convergence is slower for
rc = 2 Å. For a large RI basis set with 240 auxiliary functions per MoS2 unit, we find that the bandgap for rc = 2 Å matches the
bandgap for rc = 3 Å within 0.02 eV . Overall, we confirm that rc = 3 Å is a good choice.

We note that in plane-wave implementations, RI with different metrics is not discussed. The reason is that the Coulomb matrix,
the truncated Coulomb matrix and the overlap matrix are diagonal in the plane-wave basis. As consequence, RI factorizations as
in Eq. (S8) are identical for the three different metrics when using plane wave basis functions. More details can be found in the
Supporting Information of Ref. 25.
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FIG. S3. Gap of monolayer MoS2 (12× 12 supercell) as function of the number of auxiliary functions {φP} and the cutoff radius in RI metric.
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S6. COMPARISON OF THE LOW-SCALING GW ALGORITHM TO A STANDARD-SCALING GW ALGORITHM

In Fig. S4, we compare the periodic, Gaussian-based, low-scaling GW algorithm from the manuscript with a periodic,
Gaussian-based GW algorithm that operates in frequency only and avoids sparse matrix-tensor operations.

Irreducible polarizability (scaling: N2
k NoccNvirtN2

RI)
.

χPQ(k, iω) = 1
Nk

∑
iaq

(ik ak−q | Pq)
2(εik − εak−q)

ω2 + (εik − εak−q)2 (ik ak−q |Qq)

(ik ak−q | Pq) are three-center integrals of the RI metric m(r, r′),
see Ref. 28 for a definition.

Dielectric function (scaling: NkN3
RI)

.
ϵ(k, iω) = 1 − V0.5(k)M−1(k)χ(k, iω)M−1(k)V0.5(k)

Screened Coulomb potential (scaling: NkN3
RI)

.
W(k, iω) = Vrc (k)+V0.5(k)

(
ϵ−1(k, iω)− Id

)
V0.5(k)

W̃(k, iω) =M−1(k) W(k, iω) M−1(k)

Self-energy (scaling: N2
k N2

AON2
RI)

.

Σnk(iω) = −
1

2πNk

∑
mq

∫
dω′

1
i(ω − ω′) + εF − εmk−q

×
∑
PQ

(nk mk−q | Pq) W̃PQ(q, iω′) (nk mk−q |Qq)

Self-energy

1. Γ-point only (scaling for large systems25: N2)
.
Σλσ(0, iτ) = i

∑
νµPQ

(λ0 µ0 |Q0) Gµν(0, iτ) (ν0σ0 | P0) W̃PQ(iτ)

2. Transformation to Bloch states (Escaling: NkN3
AO)

.

Σλσ(k, iτ) =
∑

R

eik·R ·

 Σλσ(0, iτ) if ϕ0
λ, ϕ

R
σ closest,

0 else

Σnk(iτ) =
∑
λσ

C∗nλ(k)Σλσ(k, iτ) Cnσ(k)

Screened Coulomb potential (scaling: NkN3
RI)

.
W(k, iω) = Vrc (k)+V0.5(k)

(
ϵ−1(k, iω)− Id

)
V0.5(k)

WR(iω) =
1

Nk

∑
k

eik·R W(k, iω)

WMIC
PQ (iω) = W

Rmin
PQ

PQ (iω) , Rmin
PQ = argmin

R

∣∣∣RP − (RQ + R)
∣∣∣

W̃(iω) =M−1(0) WMIC(iω) M−1(0)

Dielectric function (scaling: NkN3
RI)

.
ϵ(k, iω) = 1 − V0.5(k)M−1(k)χ(k, iω)M−1(k)V0.5(k)

Irreducible polarizability

1. Γ-point only (scaling for large systems25: N2):
.
χPQ(0, iτ) =

∑
λνµσ

(µ0 ν0 | P0) Gµλ(0,−iτ) (λ0 σ0 |Q0) Gνσ(0, iτ)

2. Γ-point to arbitrary k-point:
.

χPQ(k, iτ) =
∑

R

eik·R ·

 χPQ(0, iτ) if φ0
P, φR

Q closest,

0 else

Periodic GW algorithm in a Gaussian basis with RI
(similar to the algorithm by Zhu and Chan28)

Low-scaling periodic GW algorithm in a Gaussian basis with RI
(this work)

3. Time to frequency transform:
.

χPQ(k, iω) =
∫

dτ cos(ωτ) χPQ(k, iτ)

4. Remove all spurious negative eigenvalues of χPQ(k, iω)

FIG. S4. Left column: Periodic GW algorithm with Gaussian basis functions, similar to Ref. 28. Right column: Periodic GW algorithm with
Gaussian basis functions from this work.
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S7. REQUIRED NUMBER OF FLOATING POINT OPERATIONS OF A PLANE-WAVE BASED GW ALGORITHM

The computational effort of applying plane-wave based GW algorithms to two-dimensional materials is large. In a brute-force
plane-wave implementation17,30, the computational bottleneck is computing the irreducible polarizability,

χGG′ (q, iω) =
occ∑
n

empty∑
n′

∑
k

⟨nk+q|ei(q+G)·r|n′k⟩ ⟨n′k|e−i(q+G′)·r|nk+q⟩
εnk+q − εn′k + iω

, NPW
flop(χ) = 4NqNωN2

GNoccNemptyNk , (S16)

where G,G′ are reciprocal lattice vectors, q is a vector in the first Brillouin zone, n, n′ refer to occupied and empty bands,
respectively, and the brackets in the second line denote integrals of a plane wave and Bloch states. NPW

flop(χ) in Eq. (S16) denotes
the number of floating point operations (real double precision) which is the product of:

• a factor 4 to account for the complex numbers,

• the number of q-points, Nq, to discretize χ(q) in the Brillouin zone, (a 3×3 mesh has been chosen in Ref. 31 for a large-
scale calculation on a 2D material; considering time-reversal symmetry q↔−q, a 3×3 mesh contains 5 independent
q-points; the 3×3 mesh is necessary to resolve the divergence of the Coulomb interaction at q→ 0)

• the number of frequency points, Nω, (We assume full-frequency calculations32 with Nω = 10 as in the main manuscript.
When using a plasmon-pole model31,32, one would have Nω = 1.)

• the number of plane waves, N2
G, where the square is due to the row and column index of χ, (From the energy cut-

off Ec = 25 Ry31,32, we estimate the plane-wave cutoff Gc =
√

2meEc/ℏ and the corresponding reciprocal sphere volume
Ωc = 4πG3

c/3. From the 1×1 supercell size Vcell = 2.5 Å×2.5 Å×25 Åof a 2D semiconductor, we estimate the Brillouin
zone volume ΩBZ = (2π)3/Vcell which leads to NG =Ωc/ΩBZ = 2200 for a 1 × 1 supercell.)

• the number of occupied bands, Nocc, (which follows from the employed pseudopotential)

• the number of empty bands, Nempty, (which is a convergence parameter and has been chosen in Ref. 32 as 6000 for a 1×1
cell, we assume a factor 10 less empty bands for large-scale calculations) and

• the number of k-points, Nk, for the Brillouin zone sum
∑
k

(for large-scale calculations, the Γ-point is sufficient, i.e. Nk = 1).

Another computationally demanding operation in plane-wave GW algorithms is to invert the dielectric matrix ϵGG′ (q, iω),17

ϵ−1
GG′ (q, iω) :=

(
ϵ(q, iω)

)−1
GG′ , NPW

flop(ϵ) = NqNωN3
G . (S17)

We estimate the required floating point operations to evaluate Eq. (S16) and (S17) in Table S2. In case of stochastic sampling30

of the occupied-virtual sum in Eq. (S16), the computational prefactor and the system size scaling of Eq. (S16) may be reduced.
The inversion of ϵ in Eq. (S17) needs to be executed independently of stochastic subsampling and requires an order of magnitude
more FLOPs compared to the low-scaling GW algorithm from this work (see Table S3).

TABLE S2. We estimate the required operations to compute the irreducible polarizability in a plane-wave basis set, Eq. (S16), for a 2D
semiconductor as monolayer MoS2. Computational parameters are chosen similar to Refs. 31 and 32.

Supercell Nocc Nempty NG Nq Nk Nω NPW
flop(χ) NPW

flop(ϵ)

1x1 13 600 2200 20 10 10 3.0 · 1014 2.1 · 1012

2x2 52 2400 8800 5 3 10 5.8 · 1015 3.4 · 1013

3x3 117 5400 19800 5 2 10 9.9 · 1016 3.9 · 1014

4x4 208 9600 35200 5 1 10 4.9 · 1017 2.2 · 1015

6x6 468 21600 79200 5 1 10 1.3 · 1019 2.5 · 1016

8x8 832 38400 140800 5 1 10 1.3 · 1020 1.4 · 1017

10x10 1300 60000 220000 5 1 10 7.6 · 1020 5.3 · 1017

12x12 1872 86400 316800 5 1 10 3.2 · 1021 1.6 · 1018

14x14 2548 117600 431200 5 1 10 1.1 · 1022 4.0 · 1018
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S8. REQUIRED NUMBER OF FLOATING POINT OPERATIONS OF THE GW ALGORITHM FROM THIS WORK

We compute χ in this work in three steps25,

χPQ(q=0, iτ) =
∑
λν

XλνP(iτ) YλνQ(iτ) , Nflop = NτN2
RIN

2
AO α , (S18)

XλνP(iτ) =
∑
µ

(µν|P) Gµλ(k=0,−iτ) , YλνQ(iτ) =
∑
σ

(λσ|Q) Gνσ(k=0, iτ) , Nflop = 2NτNRIN3
AO α . (S19)

The required floating point operations, Nflop, is computed as a product of:

• the number of time points, Nτ, [cf. Fig. S2 (a)]

• the number of auxiliary RI basis functions, NRI,

• the number of Gaussian basis functions NAO to expand Bloch states,

• α is the percentage of matrix elements (µν|P) above a certain filter threshold [cf. Fig. S2 (c)]. All matrix elements smaller
than the threshold are neglected in the computation. For a large number of atoms Nat in the unit cell, α is smaller than one,

α ∼

(
N∗at

Nat

)2

, (S20)

where N∗at is the number of atoms of the largest system without sparsity, i.e. α= 1 for a system with N∗at atoms. With
Eq. (S20), the computational scaling of Eqs. (S18) and (S19) is O(N2

at) for Nat >N∗at.

The number of auxiliary Gaussians is typically two to three times larger than the basis set for Bloch orbitals, NRI ≈ 2-3·NAO.
This results in a similar number of floating point operations of Eq. (S18) and (S19). Computing the self-energy is expected
to require a similar number of floating point operations as Eq. (S18) and (S19). The complex diagonalization of χPQ(k, iω) to
remove spurious negative eigenvalues is estimated to require 10N3

RINkNω operations, where Nω =Nτ.25 We choose a 4×4 and
6 × 6 k-mesh to extrapolate the Brillouin zone integration of W. This extrapolation requires Nk = 26 kpoints when considering
time-reversal symmetry k↔ −k.

Summarizing, we estimate the total required number of floating point operations as

NGauss
flop = 4NτN2

RIN
2
AO α + 10N3

RINkNω . (S21)

Results for NGauss
flop for monolayer 2D semiconductors are summarized in Table S3.

TABLE S3. Required number of operations (S21) to execute the G0W0 algorithm from this work for a 2D semiconductor as monolayer MoS2.

Supercell NAO NRI Nτ = Nω α Nk NGauss
flop

1x1 69 159 1.000
9x9 5589 12879 10 0.160 26 3.9 · 1016

10x10 6900 15900 10 0.105 26 6.1 · 1016

11x11 8349 19239 10 0.072 26 9.3 · 1016

12x12 9936 22896 10 0.051 26 1.4 · 1017

13x13 11661 26871 10 0.037 26 1.9 · 1017

14x14 13524 31164 10 0.027 26 2.7 · 1017
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S9. COMPARISON OF FLOATING POINT OPERATIONS OF GW ALGORITHM FROM THIS WORK TO BRUTE-FORCE
PLANE-WAVE GW ALGORITHM

The presented GW algorithm has several computational advantages over plane-wave-based GW algorithms. The computa-
tional bottleneck in plane-wave-based GW algorithms is the calculation of the irreducible polarizability from Eq. (S16). The
required number of floating point of this operation is given in Table S2. The required number of operations of our presented
G0W0 algorithm is given in Table S3. Our G0W0 algorithm requires a similar number of floating point operations for a 9 × 9
supercell as a plane-wave G0W0 algorithm for a 3×3 supercell. For a 14×14 supercell, our G0W0 algorithm requires 40, 000
times less operations compared to a plane-wave based algorithm. This large factor has several origins, most important are the
following: The plane-wave basis {eiG·r} for χ resolves large vacuum regions31,32 for two-dimensional materials and is thus a fac-
tor 10 larger than the Gaussian auxiliary basis {φP}. We thus need to calculate 100 times less matrix elements of χ in a Gaussian
basis compared to Eq. (S16). Three-center integrals over Gaussians are sparse due to the spatial locality of Gaussians25. Only
3 % of the integrals need to be considered for a 14×14 supercell reducing the number of operations by another factor 30. In the
present algorithm, χ is evaluated at the Γ-point using real-valued matrix algebra25 which makes another factor 4 compared to
the complex matrix algebra in Eq. (S16). In Eq. (S16), at least a 3×3 mesh for q is necessary31 which is responsible for another
factor of 533. These numerical parameters thus explain a factor of 60,000 between the required operations of a plane-wave G0W0
algorithm and the G0W0 algorithm from this work.

S10. REQUIRED NUMBER OF FLOATING POINT OPERATIONS OF A STANDARD-SCALING GW ALGORITHM WITH
GAUSSIAN BASIS FUNCTIONS

In a standard-scaling GW algorithm, χ is computed in imaginary time with the Adler-Wiser (AW) formula34,35,

χPQ(q=0, iω) = 2
occ∑

i

empty∑
a

εik=0 − εak=0

ω2 + (εik=0 − εak=0)2 , NAW
flop = NωN2

RINoccNvirt . (S22)

The required floating point operations, Nflop, is computed as a product of:

• the number of frequency points, Nω, typically Nω = 10 when using a minimax grid9,

• the number of auxiliary RI basis functions, NRI, typically NRI ≈ 2-3·NAO, where NAO is the number of Gaussian basis
functions to expand Bloch states,

• the number of occupied states, Nocc,

• the number of empty states, Nvirt, which is determined by the Gaussian basis set as we have NAO =Nocc +Nvirt,36

Similarly to Eq. (S21) we need to diagonalize χPQ(k, iω) to remove spurious negative eigenvalues leading to the total required
number of floating point operations

NGauss,AW
flop = NωN2

RINoccNvirt + 10N3
RINkNω . (S23)

Results for NGauss,AW
flop for monolayer 2D semiconductors are summarized in Table S4. For a 9x9 cell, the number of floating point

operations is lower than the low-scaling space-time37 GW algorithm (Table S3). For a 14x14 cell, the low-scaling space-time
algorithm (S18), (S19) requires a similar number of operations compared to using the Adler-Wiser formula (S22). For larger
systems, the low-scaling space-time algorithm will be computationally more efficient than the Adler-Wiser formula (S22).

TABLE S4. Required number of operations (S23) to execute the standard-scaling G0W0 algorithm with the Adler-Wiser formula (S22) for a
2D semiconductor as monolayer MoS2.

Supercell Nocc Nvirt NRI Nω Nk NGauss,AW
flop

1x1 13 56 159
9x9 1053 4536 12879 10 26 1.35 · 1016

10x10 1300 5600 15900 10 26 2.89 · 1016

11x11 1573 6776 19239 10 26 5.80 · 1016

12x12 1872 8064 22896 10 26 1.10 · 1017

13x13 2197 9464 26871 10 26 2.01 · 1017

14x14 2548 10976 31164 10 26 3.50 · 1017
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S11. FLOATING POINT OPERATIONS FOR THE LARGEST MOSE2/WS2 HETEROSTRUCTURE WITH 984 ATOMS

We evaluate Eqs. (S16) and (S21) to compute the required number of floating point operations for the 984-atom MoSe2/WS2
heterostructure shown in Fig. 4 in the manuscript. For the large-scale Gaussian-based algorithm from this work, we have the
computational parameters (defined in Sec. S8) and corresponding operations NGauss

flop [Eq. (S21)]:

Nτ = Nω = 10 , NRI = 49441 , NAO = 22632 , α = 0.66 % , Nk = 26 , NGauss
flop = 6.5 · 1017 . (S24)

For a plane-wave G0W0 algorithm, the relevant computational parameters and corresponding operations NPW
flop(χ) [Eq. (S16)] are

Nω = 10 , Nocc = 4264 , Nempty = 196800 , NG = 320000 , Nq = 5 , Nk = 1 , NPW
flop(χ) = 1.7 · 1022 . (S25)

S12. TIMINGS OF THE GW ALGORITHM

TABLE S5. Timings of G0W0@LDA calculations on monolayer MoSe2 supercells of different size on Supermuc-NG (processor type: Intel
Skylake Xeon Platinum 8174, 48 cores per node, 768 GB memory per node).

Supercell size Number of nodes Total time (h) Time of Eq. (S18)/(S19) (h) Time of diag. of χPQ(iω,k) (h) Time for Σ (h)

9 × 9 6 8.7 1.8 1.5 4.7
10 × 10 12 7.1 1.3 1.6 3.6
11 × 11 20 7.8 1.3 2.4 3.3
12 × 12 22 10.0 1.5 3.1 4.3
13 × 13 28 13.1 1.8 4.9 4.9
14 × 14 34 15.5 1.9 6.1 5.5

S13. SUPERCELL SIZE CONVERGENCE OF THE PRESENT GW ALGORITHM COMPARED TO STOCHASTIC GW

In this section, we discuss the convergence of GW gaps with respect to the simulation cell size. Our algorithm converges for
supercells that are larger than the characteristic decay length of polarizability and Green’s functions. Stochastic GW38 also relies
on large supercells that need to be larger than the characteristic electron-electron correlation length.

The supercell convergence of the stochastic G0W0 gap has been tested for monolayer and bilayer phosphorene in Ref 38, see
Fig. S5 (a). For monolayer phosphorene (blue traces), the size convergence is slow. The G0W0 gap of the two largest calculations
(1/L= 0.0076 a−1

0 and 1/L= 0.0098 a−1
0 ) differ by 0.12 eV. An extrapolation towards infinitely large supercells is necessary which

yields a G0W0 gap of 2.07 eV, in good agreement with reference calculations on phosphorene38. The slope of the extrapolation
line deviates from the slope taking only the two largest calculations by ∼ 50 % which might be a sign of numerical instabilities
of large-scale calculations. The convergence of bilayer phosphorene (green traces) seems faster than for the monolayer because
the two largest points differ by only 0.02 eV. A confirmation of the bilayer convergence with an even larger supercell size has
not been reported in Ref. 38.

In Figure S5 (b), we show the convergence of the G0W0 gap with respect to the supercell size for monolayer phosphorene
calculated by our low-scaling GW algorithm. The G0W0 gap of the five largest supercells agree within only 14 meV. In com-
parison, the stochastic G0W0 gaps of phosphorene change from the supercell with 1/L= 0.015 a−1

0 to the largest supercell with
1/L= 0.0076 a−1

0 by 250 meV (monolayer) and 150 meV (bilayer). We conclude that our algorithm is superior in supercell size
convergence over the stochastic GW algorithm presented in Ref. 38.

S10



0.00 0.01 0.02 0.03 0.04
0.0

0.4

0.8

1.2

1.6

2.0

2.4

1/L (a−1
0 )

G
0W

0
ba

nd
ga

p
(e

V
)

monolayer phosphorene (Ref. 38)
bilayer phosphorene (Ref. 38)

(a)

0.00 0.01 0.02 0.03 0.04
0.0

0.4

0.8

1.2

1.6

2.0

2.4

1/L (a−1
0 )

G
0W

0
ba

nd
ga

p
(e

V
)

monolayer phosphorene (present work)

(b)

FIG. S5. Convergence of the G0W0 band gap with respect to the inverse characteristic length L of two-dimensional materials in units of the
Bohr radius a0. (a) Supercell convergence of stochastic-G0W0 gaps for monolayer phosphorene and bilayer phosphorene from Ref. 38. (b)
Supercell convergence of low-scaling-G0W0 gaps from this work for monolayer phosphorene.
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