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I. COMPUTATIONAL DETAILS AND METHODS

Geometry. As a starting point for the supercell optimization in the presence of the

vacancy (see details below), we consider the geometry of a pristine heterobilayer with a lattice

parameter whose length corresponds to an average nearest-neighbor metal-metal distance

(equal to the in-plane monolayer TMDC lattice constant) of d̄X–X = 3.15Å both for MoS2

and WS2. This value is almost equal to the experimental monolayer lattice parameter of

both TMDC (MoS2; 3.15 Å [1] and WS2; 3.153 Å [2]). As stated in the main text, the

supercell is composed of 4 × 4 TMDC unit cells and 5 × 5 graphene unit cells. Therefore,

it is made of 97 atoms and possesses a rhomboedral shape with in-plane lattice vectors of

length |R1,2| ≃ 12.6 Å (see Fig. S1). This supercell size allows us to describe isolated

vacancies, within a defect density of ∼ 3%, at least one order of magnitude larger than

the typical intrinsic vacancy concentration3). The vacuum distance between the periodic

replicas in the out-of-plane direction was taken to be ∼ 10 Å and the average interlayer

distance within the supercell was d̄inter = 3.43 Å both for Mo and W.

Fig. S1. Top view of the WS2–Gr supercell. Four supercells are shown, each supercell forms a
parallelepiped whose lateral boundaries are given by the straight red lines (the in-plane supercell
lattice vectors are labeled as R1, R2). The chalcogen vacancy, located in the TMDC layer on the
opposite side of the graphene layer, is indicated by a red triangle.

Density functional theory. The DFT calculations were performed employing the

implementation of DFT of Quantum Espresso.4,5 We used the non-empirical PBE gen-

eralized gradient approximation for the exchange–correlation functional6. We employed a
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plane-wave basis set and included spin-orbit interaction by means of full relativistic norm-

conserving pseudopotentials7. We considered a basis cut-off of 50 Ry for both TMDC–Gr

interfaces. The self-consistent charge density was converged within a 6× 6× 1 k-grid, with

Fermi-Dirac smearing of 10−5 Ry for fractional occupations. The calculation was considered

to be converged only if the total energy difference between consecutive iterations within the

self-consistent field cycle was smaller than the threshold value of 10−9 Ry.

The supercells were initially preoptimized with VASP8 in the absence of chalcogen va-

cancies. For the exchange-correlation functional a local density approximation (LDA) was

employed, with a basis set energy cut-off of 600 eV. The self-consistent charge density for

the geometry relaxations was converged in a 6 × 6 × 1 k-grid as well. The supercells were

subsequently relaxed, fixing only the position of the supercell lattice vectors and optimiz-

ing the position of the TMDC atoms within the supercell after the chalcogen atom was

removed. The position of the atoms was relaxed until all components of the forces were

smaller than a threshold value of 10−3 Ry/a0. This second optimization was done with

Quantum Espresso, using PBE and the van-der Waals corrected functional vdw-df-099–11

to properly account for changes in the interlayer separation.

GW. Using the DFT wavefunctions and energies as a starting point, we computed the

corrected quasi-particle energy spectrum by performing a one-shot non-self-consistent GW

calculation (G0W0). Our GW calculations were performed with the package BerkeleyGW,

including spin-orbit interaction12–15. The dielectric function was obtained with the gener-

alized plasmon-pole model of Hybertsen-Louie16. We employed a cut-off of 5 Ry in the

dielectric screening and a total of 2499 states for the summation over the occupied and un-

occupied states. We used a non-uniform neck subsampling scheme to sample the Brillouin

zone close to |q| → 0 and speed up the convergence with respect to the k-grid sampling17.

Within this scheme, we considered a 6 × 6 × 1 uniform q-grid and 10 additional q-points

around q = 0. A truncated Coulomb interaction was considered in the perpendicular direc-

tion to the heterostructure to prevent spurious interactions between the periodic replicas in

this direction18. This set of parameters yields converged quasiparticle gaps within 100 meV.
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BSE. To study the excitonic features, we solved the Bethe-Salpether equation (BSE)13,19

(Eck − Evk)A
S
vck +

∑
v′c′k′

Keh
vck;v′c′k′AS

v′c′k′ = ΩSA
S
vck, (S1)

where Eck (resp. Evk) are the quasiparticle energies of the conduction (resp. valence) bands,

Keh
vck;v′c′k′ = ⟨vck|K̂eh|v′c′k′⟩ are the matrix elements of the electron-hole interaction kernel,

defined from the addition of an attractive screened direct and a repulsive bare exchange

Coulomb contributions, ΩS is the exciton energy and AS
vck is the amplitude of the exciton

state |ΨS⟩. This equation sets an eigenvalue problem, ĤBSE|ΨS⟩ = ΩS|ΨS⟩, where the

matrix elements of the BSE Hamiltonian in the electron-hole basis are given by

HBSE
cvk;c′v′k′ = (Eck − Evk)δc,c′δv,v′δk,k′ +Keh

vck;v′c′k′ . (S2)

This representation of the BSE assumes that the (real-space) direct exciton wavefunction is

described as the coherent superposition of electrons and holes at each k-point,

⟨re, rh|ΨS⟩ =
∑
vck

AS
vckψ

∗
vk(rh)ψck(re), (S3)

with ψck(re) being the spinor wavefunction describing the electron at position re with con-

duction band quantum number c and crystal momentum k (correspondingly, ψvk(rh) is the

spinor wavefunction describing a hole at position rh and characterized by the valence band

quantum number v and same crystal momentum k).

Eq. (S1) was solved using the BerkeleyGW package12–14. The matrix elements were

computed on a Monkhorst-Pack 9×9×1 k-grid and the result interpolated to a uniform 27×
27× 1 k-grid that we employ in any subsequent analysis and calculation. We employed the

Tamm-Dancoff approximation and evaluated the Coulomb interaction kernel for all possible

transitions between pairs of bands (n,m) → (n′,m′), with an energy cut-off of 5 Ry for

the dielectric matrix within the electron-hole kernel matrix elements. We considered for the

main paper a total of 28 bands (14 valence and 14 conduction bands) in the absorption

calculations, which include both the defect bands as well as all the relevant low energy

pristine valence and conduction bands of the heterobilayer. These parameters converged the

calculated excitonic spectra within 100 meV for the defect-dominated subgap features and
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below 10 meV for the most prominent absorption resonances in the region where intralayer

non-defect TMDC excitons become more relevant. In the absorption calculation, we also

avoid the heavy calculation of the q-shifted wavefunctions on the interpolation grid by

evaluation of the matrix elements of the velocity operator, v̂, instead of the momentum,

p = i∇. This involves neglecting terms in the sums proportional to |⟨0|[V̂ps, r̂]|S⟩|2, where

V̂ps is the non-local part of the pseudopotential12,13. Including the non-local terms has been

shown to not qualitatively change the shape of water X-ray absorption spectrum20.

Projected density of states. We compute the layer contribution of each band to a

given exciton state, first by obtaining the k-projected density of states (DoS) of each layer,

l = {WS2,Gr} from the k-resolved projected DoS

glnk(E) =
∑

{iA,A}∈l

|⟨ϕA
iA
|ψnk⟩|2δ(E − Enk), (S4)

where |ψnk⟩ and Enk are the Kohn-Sham states and energies and the sum runs over atoms

A and orbitals iA of the corresponding layer l. We further normalize this quantity for each

layer as g̃(E) = g(E)/max[g(E)] so that

g̃nk(E) = g̃WS2
nk (E)− g̃Gr

nk(E), (S5)

is defined in the range [−1, 1]. This way, g̃nk(E) = −1 corresponds exclusively to graphene

contribution and g̃nk(E) = 1 exclusively to TMDC contribution.

Heterostructure decomposition. We employ Eq. (S5) to display the color of the

band contributions to the exciton decomposition as well as the absorbance decomposition

into intralayer and interlayer parts in the main paper. In particular, for Fig. 2 and Fig.

S5, the contributions to a given conduction band are obtained as
∑

vck g̃vk|AS
vck|2 while the

contributions to a given valence band result from
∑

vck g̃ck|AS
vck|2. The k-resolved decom-

position in Fig. 3(b) of the main paper (see also Figs. S9, S12, S13) are obtained using the

same expressions but without the summation over the crystal momentum.
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Absorbance. From the absorption, we compute the associated absorbance using21

A(ω) =
ωLz

c
ϵ2(ω), (S6)

where ω is the photon frequency, c the speed of light, Lz the distance between the het-

erostructure and its periodic replicas and ϵ2(ω) the imaginary part of the dielectric function.

Exciton binding energy. The excitonic binding energies are calculated from the dif-

ference between the expectation values of the diagonal and the full BSE Hamiltonian,

ES
bind = ⟨ΨS|ĤBSE − K̂eh|ΨS⟩ − ⟨ΨS|ĤBSE|ΨS⟩,

=
∑
vck

|AS
vck|2(Eck − Evk)− ΩS, (S7)

where ĤBSE is the BSE Hamiltonian and K̂eh the electron-hole interaction kernel; Eαk, the

quasi-particle bands; and ΩS, the exciton energy.

Intrinsic decay rate. To compute the intrinsic decay rate of the zero-momentum

excitons we follow Refs. [22–24]

γS =
4πe2

m2c

µS

AcΩS

, (S8)

where m is the electron mass, µS is the BSE oscillator strength of the exciton with energy

ΩS and Ac the area of the supercell.

Pristine heterostructure. For the absorption calculation of the pristine WS2–Gr het-

erostructure, we considered the initial preoptimized geometry with a vacuum distance be-

tween the periodic replicas in the out-of plane direction of ∼ 13 Å. The DFT calculations

have the same basis set as well as non-empirical exchange correlation functional6 as the de-

fected heterobilayer. We considered the same convergence parameters for the basis cut-off,

k-grid and total energy difference between consecutive iterations in the self-consistent field

cycle as well. The GW calculation was performed with the same parameters within the

BerkeleyGW package12–14 as detailed previously for the defected heterostructure. Finally,

the absorption was obtained by solving the BSE equation13,19. We use a coarse 9× 9× 1 k-

grid and interpolate to a uniform 27×27×1 finer k-grid for meaningful comparison between
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our results. The energy cut-off was 5 Ry for the dielectric matrix within the electron-hole

kernel matrix elements and the total number of bands was 28 (14 valence and 14 conduction

bands), which include all the relevant low energy pristine valence and conduction bands of

the heterobilayer.

II. ADDITIONAL RESULTS

Geometry optimization. After relaxation in the presence of the vacancy, we find

that close to the defect position, the nearest-neighbor metal-metal distance decreases to

dW–W = 3.02Å and dMo–Mo = 3.05Å. This corresponds to a reduction of about 3 − 4%

in units of the TMDC monolayer lattice constant, d̄X–X. Because the supercell volume is

constant during the relaxation, the TMDC layer is strained in the vicinity of the defect where

the distance to the next-nearest-neighbor metallic atoms increases up to ≃ 3.2 Å for the

functional employed here. Similar behavior is also observed for the sulfur atoms surrounding

the vacant site, which rigidly follow the motion of the metallic atoms. Geometry optimization

also reduces the average interlayer distance in the heterostructure by around 3 − 4%. In

particular, we find a reduction of the interlayer distance to d̄inter = 3.29 Å in the case of

MoS2–Gr and d̄inter = 3.31 Å for WS2–Gr for our relaxation criteria and our employed van

der Waals scheme.

DFT bandstructures. For completeness, we show the bandstructures obtained using

the DFT relaxed structures in the presence of spin-orbit interaction in Fig. S2.

GW. As stated in the main text, our GW results qualitatively follow the DFT band

structures discussed in Ref. [25]. We summarize here for completeness the main features.

In essence, the band structures of graphene and the TMDC appear mostly superimposed,

with the graphene Dirac cone centered at the K̄ (and K̄’) points. The Dirac point sets the

charge neutrality point within the pristine TMDC band gap. The combination of the missing

chalcogen atom and the symmetry of the host lattice results in four empty in-gap and two

occupied spin-orbit split bands. In addition, the reduction of the original TMDC symmetry

due to graphene adsorption, and the residual defect-defect interaction that results from the

lattice mismatch between layers within the supercell as well as the supercell size (i.e. the
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Fig. S2. Band structures of the TMDC–Gr heterostructures in the presence of spin-orbit interaction
computed along the M̄−K̄−Γ̄ path in the supercell (see inset) (a) WS2–Gr heterobilayer (b) MoS2–
Gr heterobilayer.

defect density) make these bands non-degenerate and weakly dispersive. The breaking of

the degeneracy is stronger in the vicinity of the K̄ and K̄′ points. Defect states also hybridize

with the graphene states in certain regions of the supercell Brillouin zone. In particular,

the interlayer hybridization is relatively important between the defect and the graphene

bands in a ring around the K̄ and K̄′ points. This interlayer hybridization was already

measured26,27 and predicted28 for occupied bands in MoS2–Gr far from the charge neutrality

point. Proximity induced orbital and spin-orbit effects between the TMDC and graphene

also opens a gap at the Dirac cone already at the DFT level29 (∼ 1 meV). We define the

Fermi energy (Dirac point) as the mid-point of this gap, EF := ED = (Eval+Econd)/2, which

would correspond to the intersection point of the graphene bands if those would intersect.

Graphene adsorption and geometry relaxation within the supercell breaks the original

lattice symmetry25, lifting the degeneracy of the TMDC conduction states at the Λ and K

k-points, both folded into the point K̄ of the supercell Brillouin zone due to lattice commen-

suration. For WS2–Gr, this results in the lowest conduction band having Λ nature with K

states being at higher energy already at the DFT level. The identification is performed from

the pseudo-charge density, |Ψ|2 at k = K̄, which provides the orbital contribution, com-

paring to the pristine TMDC states. Screening affects more strongly the more delocalized

K states (essentially due to the defect effect), shifting them higher in energy compared to

the folded Λ states (by ∼ 0.25 eV), the latter determining thus the pristine band gap. For

MoS2–Gr, already at the DFT level the K bands are below the Λ bands by ∼ 0.1 eV and
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Fig. S3. DFT and GW calculated valence and conduction band energies at the K̄ point for the
defected WS2–Gr heterobilayer. We compare the DFT results with the GW calculated ones using
5 Ry and 10 Ry as dielectric cut-off.

this situation reverses at the GW level, where the K bands appear ∼ 0.15 eV above. This

again gives a relative shift of ∼ 0.25 eV, suggesting that in both heterostructures the levels

shifting results from the graphene dielectric screening.

The screening and exchange renormalize also the graphene Fermi velocity associated to

the slope of the Dirac cone. In particular, we obtain an increase of the Fermi velocity of

∼ 34% for WS2–Gr and ∼ 41% for MoS2–Gr, consistent with a reported increase of the

Fermi velocity of ∼ 34% in Ref. [21] and slightly larger than the ∼ 18% reported in Ref.

[30] (both calculations for the isolated graphene monolayer). In addition, we find that for

WS2–Gr (resp. MoS2–Gr) the Fermi energy shifts from 3.80 eV in DFT to 4.68 eV in GW

with respect to the vacuum level (resp. 3.60 eV to 4.50 eV).

III. GW AND ABSORPTION CONVERGENCE CHECKS

We have checked that our GW calculations are converged with respect to the dielectric

cut-off value employed in the computation of the dielectric function and the self-energy,

by increasing the dielectric cut-off in the GW calculation for WS2-Gr. Our computed GW

energies are converged quantitatively up to 50 meV, see Fig. S3.

Ensuring a qualitatively k-grid converged absorption is crucial for understanding the
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Fig. S4. Brillouin zone k-grid convergence of the absorption spectrum for different supercell
sampling. (a) WS2–Gr heterobilayer (b) MoS2–Gr heterobilayer.

Fig. S5. Convergence of the absorption spectrum of WS2–Gr heterobilayer with (a) the dielectric
cut-off employed in the GW calculation (b) the number of bands included in the BSE calculation.

defect-induced phenomena presented in this paper. In Fig. S4, we show the absorption

spectrum for different supercell Brillouin zone uniform k-grid samplings of the interpolated

absorption grid for (a) WS2–Gr (b) MoS2–Gr . We find that the absorption spectra are

quantitatively well converged in the visible range, especially above optical energies ≳ 2 eV

for WS2–Gr and ≳ 1.75 eV for MoS2–Gr. In this energy range, convergence is achieved

already with a 24× 24× 1 k-grid up to ∼ 10 meV. However, the position and height of the

absorption resonances in the infrared range, especially for energies roughly below 0.3− 0.5

eV, are not yet fully converged. This region, which is also known to be strongly dominated

by intraband graphene resonances21, requires very dense k-grids for smoothness and quan-
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Fig. S6. Absorbance, absorbance decomposition and exciton contributions for the defected WS2–
Gr heterobilayer as described in Fig. 2 of the main text using the GW calculation with dielectric
cut-off of 10 Ry.

titative convergence. In the intermediate optical range, up to ∼ 1.6 − 1.7 eV, the results

are qualitatively converged, but the main absorption features are still quantitatively depen-

dent on the employed k-grid. At energies between ∼ 0.5 − 1.6 eV, the results qualitatively

agree between different k-grids, and, importantly, the height of the absorption resonances is

stable. The importance of this observation for defect-based sub-gap features and their ex-

pected survival in the limit of dense k-sampling is discussed the main text. Finally, we also

checked that the excitonic features discussed in the main paper are converged with respect

to the dielectric cut-off employed in the GW calculation (up to 100 meV as stated above)

and the number of bands included in the BSE calculation. In Fig. S5 we show in panel (a)

the comparison of the absorption spectra for the defected WS2–Gr heterobilayer with the

quasi-particle energies computed with different dielectric cut-offs and in panel (b) the effect

of adding four additional bands (from 28 to 32) to the BSE calculation. The absorbance and

excitonic decomposition for WS2–Gr is shown in Fig. S6, which corresponds to the same

Fig. 2 of the main text with the larger 10 Ry dielectric cut-off for the GW energies. We

find that our results are qualitatively and quantitatively converged, which strengthens our

observations.
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Fig. S7. Absorbance and exciton contributions for the defected MoS2–Gr heterobilayer. (Top)
Absorbance calculated along one of the main in-plane polarization directions, as well as its decom-
position into graphene and MoS2 contributions (interlayer contributions are read from the difference
of the three traces). The dashed horizontal black line marks the 2.4% universal limit of graphene
absorbance at infrared energies. The shaded box represents the estimated range for which we expect
a smooth and monotonic spectrum dominated by graphene (instead of resonances that result from
finite k-grid sampling). The vertical dotted line denotes the optical ranges below which excitons
transition from being dominated by defect-graphene sub-gap transitions to have transitions which
involve pristine TMDC bands. (Bottom) For each exciton composing the absorbance resonances,
we represent the contribution of each electron and hole bands. Each dot corresponds to the band
contribution to a given exciton summed over all k points (only bright contributions whose oscillator
strength are > 5 a.u. are shown). For reasons of clarity, all dots with value ≥ 103 a.u. have the
same area. The color code corresponds to the layer composition of each contribution and the dotted
box marks the position of the transitions towards graphene-defect empty bands.

IV. ABSORBANCE SPECTRA AND DEFECT RESONANCES IN MOS2-GRAPHENE

As mentioned in the main text, the strong mixing that occurs in WS2–Gr is also quali-

tatively similar for the case of the MoS2–Gr interface. We show in Fig. S7, top panel, the

absorbance spectrum, its decomposition into intralayer graphene, intralayer TMDC and in-

terlayer contributions as well as the graphene universal absorbance limit at infrared energies

(dashed horizontal line). Here, however, the impact of the defect bands in the absorbance

is more dramatic since the defect bands are closer to the Dirac point and thus interlayer

contributions affect the absorbance even at lower energies. Consequently, for MoS2–Gr the

absorbance spectrum is very different to that obtained for this TMDC with chalcogen va-
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cancies in the absence of graphene layer31,32. In Fig. S7, bottom panel, we show the band

contribution of each exciton. Note that, as compared to WS2–Gr, here the four spin-orbit

split defect bands can be identified clearly as being below the graphene Dirac cone already

at optical energies ∼ 0.5 eV.

V. WAVEFUNCTION DENSITIES OF RELEVANT CONDUCTION BANDS

In order to understand how the defect has such a strong impact on the absorption features,

it is instructive to look at the wavefunction densities of relevant states that participate in

the transitions. In Fig. S8, we show the pseudo-charge density for three sets of bands at the

relevant K̄ point of the supercell Brillouin zone: (a) states with K nature, i.e. which have

orbital contribution resembling the orbitals found in the monolayer at the K point; (b) states

Fig. S8. (a) Top view of the Kohn-Sham pseudo-charge density, |Ψn,k(r)|2, for the conduction
band states, derived from the monolayer K point. These densities are evaluated at the point k = K̄
of the supercell Brillouin zone of the defected WS2–Gr heterobilayer. (b) Same as in (a) but for the
states derived from the folded Λ point, at k = K̄. (c) Same as in (a) but for the two defect states
with different “orbital” quantum number.25
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originally coming from the monolayer Λ point, folded into K̄, and (c) defect states. While

the states with K nature are weakly affected by the missing atom forming the vacancy, the

perturbation due to the missing atom affects very strongly the Λ-like states, which have a

new orbital pattern that varies at longer length scales (nanometer scale). As such, we expect

these states to react differently to the dielectric screening once this is taken into account.

This difference can explain therefore, as stated in the main text, why the pristine TMDC

band-gap at the GW level is determined by the states shown in Fig. S8 (b) and not in (a).

For comparison, we display in (c) the pseudo-densities of two defect states. These states

present an orbital signature consistent with that seen in panel (b), therefore, we conclude

that the behavior and shape of the Λ-derived states is exclusively determined by the vacancy.
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VI. DEFECT-INDUCED EXCITON HYBRIDIZATION

Fig. S9. Brillouin zone exciton distribution plotted for all the WS2–Gr excitons within an energy
window of ±5 meV marked in the absorption spectrum by 1○ (centered at 2.19 eV), 2○ (centered
at 2.4 eV) and 3○ (centered at 2.7 eV). Even a small energy window close to the center of the
excitation peak shows larger hybridization between the WS2 and the graphene layers.
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Fig. S10. Sketch of most prominent transitions and transition band diagram for the absorption
peaks in Fig. S9. The excitons have all been added up within an energy window of ±5 meV.
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VII. ADDITIONAL FIGURES

Fig. S11. Exciton energies, ΩS , represented as a function of the binding energy, Ebind, for the
excitons in the MoS2–Gr heterobilayer. The binding energy is computed using Eq. (S7). We only
show the excitons with Ebind > 2.5 meV (around ∼ 14000 out of 142884 excitons for this k-grid
sampling and number of bands). The size of each dot is proportional to the oscillator strength
(rescaled by a factor of two for visibility).

Fig. S12. Brillouin zone exciton distribution for the two most bound excitons in Fig. S11. The
Brillouin zone in the top row displays

∑
v |AS

cvk|2, while the lower row shows
∑

c |AS
cvk|2. These two

excitons present graphene-defect transitions and are largely delocalized in k-space.
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Fig. S13. Same as in Fig. S12 but for two graphene dominated excitons. Both excitons are mostly
localized in the vicinity of the K̄ valleys. These excitons have a large transition dipole, with the
value of µS being 1.5 · 102 a.u. and 1.2 · 102 a.u. respectively, but small binding energy.

1.4 1.6 1.8 2.0 2.2
ΩS [eV]

10−4

10−2

100

102

τ S
[p

s]

WS2–Gr

MoS2–Gr

Fig. S14. Intrinsic radiative lifetimes at low temperatures for the grey excitons with binding energy
larger than 25 meV, both for WS2–Gr (blue circles) and MoS2–Gr (red squares). The size of the
points is proportional to the oscillator strength, rescaled for clarity by a factor of 20.
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Fig. S15. Intrinsic radiative lifetimes at low temperatures for the bright excitons in the WS2–Gr
heterobilayer with and without defects. The size of the symbols is proportional to the oscillator
strength µS , which is chosen to be larger than the threshold value of 101 a.u.. For clarity, we fix
the value of µS to be 103 a.u if larger or equal. The grey shaded area corresponds to the region of
the spectrum strongly dominated by graphene. We observe that the heterostructure without the
vacancy has brighter excitons with systematically shorter lifetimes and larger oscillator strengths
in the visible region, where the defected structure shows exciton quenching.
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