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I. COMPUTATIONAL DETAILS

Our ab initio calculations were performed using density functional theory as implemented

in the quantum espresso package1. For the exchange-correlation functional, we used

the non-empirical generalized gradient approximation of Perdew-Burke-Ernzerhof2. We

employed a plane-wave basis set and scalar relativistic (full relativistic for the spin-orbit

coupling calculations) norm-conserving pseudopotentials3 with a basis cut-off of 95 Ry for

WS2–Gr and 90 Ry for MoS2–Gr. The self-consistent charge density was calculated within

a 6×6×1 grid and the total energy considered to be converged when the difference between

iterations was smaller than a threshold value of 10−9 Ry. Preoptimizations of the supercell

were performed with VASP4, using LDA as exchange correlation functional, a basis energy

cut-off of 600 eV and a 6 × 6 × 1 k-grid. Additional relaxations in the presence of the va-

cancy were performed by fixing the supercell lattice vectors and optimizing the position of

the atoms during the self-consistent field cycle until all the components of the ionic forces

were smaller than 10−3 Ry/a0. For the optimization procedure we also employed the van-der

Waals corrected functional vdw-df-095,6 to account for potential additional changes in the

interlayer separation.

II. ELEMENTS OF APPLIED GROUP THEORY

For the sake of completeness, we briefly summarize in section of the Supporting Informa-

tion (SI) elementary point-group theory results that underlay the density functional theory

findings and the calculation of the single-particle tunneling rate matrix in the main paper

and Sec. III of the SI. We follow here Refs. 7–9. In the absence of the graphene layer, the

XS2 TMDC layer with a chalcogen vacancy possesses C3v symmetry, the point-group of the

equilateral triangle. This point group is characterized by a proper rotation axis of order 3

and 3 planes of symmetry. Traditionally, E, C±
3 and σv (v = 1, 2, 3) are chosen as notation

for the identity, rotation and reflection elements of the group, defining three equivalence

classes (see scheme in Fig. S1).

As a consequence of Schur’s lemmas8, the eigenvalues and eigenstates of a Hamiltonian

which commutes with all symmetry operators Ĝ of a group can be classified according to

the irreducible represetations of the group itsself. This is the case, if and only if, the group
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is a complete group of invariance. In other words, we can use the unique reduction of the

group into its irreducible representations to find a block-diagonal form of the Hamiltonian,

with its invariant subspaces having the same dimension as the irreducible representations

of the group. Moreover, the number of irreducible representations is equal to the number

of equivalence classes in the symmetry group. In the particular case of C3v, the group

has three non-trivial irreducible representations of dimension 1 and 2 [typically noted as

A1, A2, E, with dim(Ai) = 1 and dim(E) = 2]. Consequently, if the defect preserves the

original symmetry of the lattice, the defect states are at most double degenerated. In the

case of the XS2-defected monolayers considered in this work, three defect states appear close

to the TMDC: a pair of empty in-gap degenerated E states and an occupied non-degenerated

A1 state close to the topmost valence band. Note that the energetics of the defect states

cannot be predicted by group theory only, therefore, pointing towards the need of employing

ab initio methods in the study of these systems.

Van der Waals adsorption of graphene to the TMDC layer lowers the global symmetry

of the supercell from C3v to Cs. The Cs symmetry group only has one element apart from

the identity E, given by the plane of symmetry and noted σs. As a difference to C3v, Cs is

Abelian (all the elements of the group commute), and all its irreducible representations are

forcibly one-dimensional. Consequently, the eigenenergies and eigenstates of the system are

not guaranteed to be degenerated (except for accidental degeneracies). The heterobilayer

eigenstates stemming from the former vacancy E states, can now be classified according to

one the reflection operators, σs. Their different nature is associated to the different size of

the anti-crossings between the impurity band and the Dirac cone of graphene. We will use

this observation in the calculation of the single-particle rate matrix in Sec. III of the SI.

III. CALCULATION DETAILS FOR Γp
ij(E, σ)

In this section, we derive an expression for the single-particle rate matrix Γp
ij(E, σ) based

on the group theory analysis from Sec. II of the SI. We start from Eq. (19), which contains

as crucial component the tunneling (“hybridization”) matrix elements, tikσ. These matrix

elements are assumed to be spin-diagonal, tiσ,kσ′ = tikσδσσ′ , as the tunneling occurs over a

thin vacuum layer which cannot change the spin orientation. By definition, tikσ are given
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Fig. S1. Schematic representation of the non-trivial operations of the group C3v (rotation by 2π/3,
reflection with respect to a plane of symmetry) for the chalcogen vacancy in the XS2 monolayer.

by

tikσ = ⟨iσ|Ĥ|kσ⟩ := ⟨i|Ĥ|k⟩, (S1)

where Ĥ is the Hamiltonian of the system, |i⟩ ≡ |i,0⟩ is a localized impurity state, localized,

for convenience, at the origin of the Bravais supercell lattice, |k⟩ a graphene eigenstate and

the spin degree of freedom is kept implicit as it does not intervene in the calculation.

We can express the defect band in the reciprocal space as

|i,k⟩ = 1√
Nsc

∑
R

eik·R|i,R⟩, (S2)

where {R} spans the supercell lattice and Nsc is the number of supercell lattice points. It

is convenient to have the defect at the origin of coordinates (see Fig. 1 in the main text);

then, the inverse transformation reads

|i,0⟩ = 1√
Nsc

∑
k

|i,k⟩, (S3)

where {k} spans the quasi-momenta lattice of the supercell Brillouin zone.

Using Eq. (19), we estimate the value of the single-particle rate matrix by looking at

the region of the spectrum showing level repulsion between the graphene and the vacancy

states. Note that we consider only the orbital component of the system without spin-orbit

interaction, spin-orbit coupling will be incorporated perturbatively into the model at a later
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stage in the main paper. Substituting the matrix elements we find, for each spin sector,

Γ+
ij(E) =

2π

ℏ
1

Nsc

∑
k

∑
k′,k′′

⟨i,k′|Ĥ|k⟩⟨k|Ĥ|j,k′′⟩δ(E − ϵk), (S4)

=
1

Nsc

∑
k

⟨i,k|Ĥ|k⟩⟨k|Ĥ|j,k⟩δ(E − ϵk), (S5)

where we used that the graphene and the TMDC layers have the same periodicity. In other

words, the translational invariance with respect to the supercell lattice vectors ensures that

tikσ only couples graphene and vacancy states with the same quasi-momentum.

The single-particle tunneling rate matrix is not diagonal in the quasi-angular momentum

basis labeled by i, j = ± because the graphene substrate does not share the same symmetry

as the TMDC layer. Instead, as discussed in Sec. II of the SI, in the presence of the graphene

layer the TMDC global C3v symmetry is lowered to a Cs symmetry. Consequently, we can

classify the states by using the action of an operator from the group Cs. For example, we

can choose the major plane of symmetry on Fig. 1 whose action on Eq. (S2) is

σ̂s|+,k⟩ = 1√
Nsc

∑
R

eik·R|−, σsR⟩ = |−, σsk⟩. (S6)

Similarly, we find σ̂s|−,k⟩ = |+, σsk⟩. We therefore construct a basis from the quasi-

angular momentum states in which σ̂s is diagonal, σ̂s|u⟩ = u|u⟩, with u = ± from the

linear combination (normalized sum/difference) of the i = ± states. In this basis, σ̂s|u,k⟩ =

u|u, σsk⟩ and σ̂s|k⟩ = exp[iφ(k)]|σsk⟩ where φ(k) is a phase. We now show that Eq. (S5) is

a diagonal matrix in this basis, which also defines a symmetry of the Hamiltonian Ĥ. Using

the observations above, it is straightforward to prove that

∑
k

⟨u,k|Ĥ|k⟩⟨k|Ĥ|ūk⟩ =
∑
k

⟨u,k|σ̂2
sĤσ̂2

s |k⟩⟨k|σ̂2
sĤσ̂2

s |ūk⟩ = −
∑
k′

⟨u,k′|Ĥ|k′⟩⟨k′|Ĥ|ū,k′⟩,

(S7)

with k′ = σsk and ū = −u. Here, we used that the phase φ(k) cancels out into the projector

|k⟩⟨k|. As a consequence Γ+
uū = −Γ+

uū = 0, i.e. the single-particle rate matrix is diagonal in

the orbital subspace, Γuu′ = Γ+
uuδuu′ with Γ+

uu′ = Γ−
u′u.
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We thus consider only the diagonal elements,

Γ+
uu(E) =

2π

ℏ
1

Nsc

∑
k

|⟨u,k|Ĥ|k⟩|2δ(E − ϵk), (S8)

and, in the limit Nsc → ∞, we transform the discrete sum over the quasimomenta into an

integral over the supercell Brillouin zone by

∑
k

→ NscAsc

(2π)2

∫
SBZ

dk, (S9)

where Asc is the supercell area. Thus, Eq. (S8) becomes

Γuu(E) =
2π

ℏ
Asc

(2π)2
|tu|2

∑
τ

∫ 2π

0

dφ

∫ ∞

0

dkkδ(E − ℏvFk), (S10)

where τ = ± is the valley index, vF the Fermi velocity and k measures the distance of the

quasi-momentum from a graphene Dirac point. Moreover, tu := tukσ is defined as in Eq.

(S1) and we dropped the ± superindex as the matrix is diagonal. Notice that the integral

has been extended to k → +∞, which can be justified by the δ function, as far as E is

sufficiently close to the graphene charge neutrality point.

Introducing the graphene unit cell, Ac and density of states close to its pristine chemical

potential, ρGr(E) = 2Ac|E|/(πℏ2v2F), we obtain the diagonal elements of the single-particle

rate matrix in their final form

Γuu(E) =
π2

2ℏ
Asc

Ac
|tu|2ρGr(E). (S11)

The final step consists in estimating the absolute value of the hybridization matrix ele-

ments, which can be done by employing Eq. (23) in the main text in the context of avoided

crossings in a local two-level system.
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Fig. S2. Electronic transition time, τ , for MoS2 and WS2 vacancy states as a function of bath
temperature, T measured in kelvin, for the transitions α → β with α, β ∈ {N,N + 1}, α ̸= β.

IV. TEMPERATURE AND DEFECT ENERGY DEPENDENCE OF THE MANY-

BODY TRANSITION RATES

We display in Fig. S2 the transition times evaluated for a wide range of bath temperatures

at fixed chemical potential (here µ = 0). For this temperature, well within the weak coupling

limit ℏΓ ≪ kBT , the transition rates are very smooth functions. Temperature opens (or

closes) the window around the defect energies where the transition to and from the reservoir

can be active, and therefore, larger sensitivity to temperature is expected in WS2 compared

to MoS2 because its defect levels are further from the Fermi energy of undoped graphene.

In addition, as we are essentially observing the effect of temperature on the Fermi function,

similar behavior occurs for the case of strong spin-orbit interaction by evaluation of Eqs.

(39)-(41).

In Figs. S3 and S4, we show the change in the transition time when the position of the

defect levels with respect to the charge neutrality point is rigidly shift. We assume that this

shift is not too large so that the hybridization matrix elements remain constant. This type

of level shift can be used to understand the impact of the change of the position of the defect

levels in the transition rates at lowest order, if screening would be taken into consideration,

e.g. at the G0W0 level. We consider first on the case of weak spin-orbit interaction. Overall,
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Fig. S3. Electronic transition times, τ , for MoS2 and WS2 vacancy states as function of the shift
of the defect levels, δE, given in eV and measured from µ = 0. This shift would result from e.g.
including screening effects. The solid and dashed lines correspond to the transitions N → N + 1

and N + 1 → N respectively.

Fig. S4. Electronic transition times with spin-orbit interaction, τ , for vacancy states at the MoS2–
Gr and WS2–Gr interface as function of the shift of the defect levels, δE, given in eV and measured
from µ = 0. This shift would result from e.g. including screening effects. The solid and dashed
lines correspond to the transitions N → N + 1 and N + 1 → N respectively.
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we observe that the trends corresponding to the charging and discharging processes are

reversed when comparing to the trends in Fig. 5 (a). For example, the charging of the

vacancy becomes slower when the energy levels are shifted away from the charge neutrality

point, while the discharging becomes faster. In other words, the positive rigid shift that

would occur if screening would be included works in the opposite way as the positive gate

voltage (as the pristine band gap becomes larger). In addition, a cusp over the smooth

trends is present once the defect levels are shifted towards the graphene Dirac point. This

cusp is originated by the alignment of the defect energy with the energy at the K̄ point,

δE = −∆E0,u, where the inverse DoS acquires a non-analytical scaling as ∼ |E|−1. While an

enhancement of the relaxation time should be expected due to these phase space arguments,

its divergence is an artefact of the perturbative approach. For example, when considering

the tunnelling coupling in the dressed second order approximation10, the tunnelling rate

for a given many-body transition is obtained by convolution of the DoS with a Lorentzian

centered on the resonant energy, thus preventing exact vanishing of the rate. In Fig. ?? we

present the electronic transition times in presence of SOC. The transition times to the single

energy levels are still characterized by the diverging cusp, which is smoothed in τeff , as the

effective rate never vanishes due to the contribution of both energy levels. Evidently, at the

G0W0 level the precise value of δE is fixed once the screening conditions are determined,

but the numerical simulations suggest both an additional way of modifying the transition

rates if the dielectric environment is altered in a controlled way and a manner of interpret

and understand screening from the experimentally measured transition rates.
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