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I. Computational details: quasiparticle and optical properties

Our calculations are employed within many-body perturbation theory, where density functional

theory (DFT) serves as a starting point [1]. We first compute the electronic wavefunctions and

Kohn-Sham energies from DFT with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation

functional [2] within the Quantum Espresso package [3, 4], including spin-orbit coupling and ex-

plicit spinor wavefunctions. The computed system contains a relaxed 5×5×1 supercell of mono-

layer MoS2 with one sulphur vacancy per supercell, and 15Å separation between periodic layers

in the out-of-plane direction. The calculations were done with a Bloch plane-wave basis-set, us-

ing norm-conserving pseudopotentials from PseudoDojo [5] and with a 75 Ry energy cutoff. The

self-consistent calculations of the electron density were done on a 6× 6× 1 uniform k-grid. The

quasiparticle bandstructure and optical properties were computed within the GW-BSE approxima-

tion using the BerkeleyGW software [6]. Quasiparticle energy corrections were calculated within

G0W0 and the generalized plasmon-pole approximation [7], on a uniform 3×3×1 k-point grid and

with 3998 spinor bands and 25 Ry cutoff of the screening function. We then expand our sampling

through the Nonuniform Neck Subsampling (NNS) scheme [8] to capture the behavior of the elec-

tron wavefunctions accurately throughout the Brillouin zone, as used previously for such supercell

system [9]. Optical properties were computed by solving the Bethe-Salpeter equation (BSE) [10].

The electron-hole interaction kernel was computed using a dielectric matrix with 1798 bands on a

6 × 6 × 1 k-point grid with 5 Ry screening cutoff. The absorption spectrum, electron-hole tran-

sitions, and exciton wavefunctions and energies were evaluated by interpolation of the interaction

kernel onto a 18× 18× 1 grid, with light polarization along the σ+ direction. The absorption was
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FIG. S1. Calculated absorbance spectrum of the MoS2 + VS system under σ+ polarized light.

calculated using [6]:
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where the delta function is broadened to a 50 meV FWHM Gaussian and the absorption oscillator

strength is calculated by:
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where 1√
2
(1, i, 0) is the direction of the light polarization. The calculated absorbance at the σ+

direction, as a function of energy, can be seen in Fig. S1.

II. Calculation of magnetic properties

Single-particle magnetic moments were calculated following Refs. [11, 12]. The orbital part of

the magnetic moment was calculated using:

morb
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where µB is Bohr’s magneton and me is the electron mass. ψnk is the wavefunction of band n

at k-point k and p̂i is the momentum operator in direction i. The momentum operator matrix

2



elements were calculated with DFT using Quantum Espresso [4]. Enk is the energy of band n at

k-point k, calculated within DFT and corrected to the GW results using a scissors-shift operator.

Degeneracies at Enk = En′k were not included in the summation as they are vanishing in the

examined bands, except for strictly at the Γ̄ point. For this reason, the Γ̄ point analysis includes

a small shift, k = (0, 0.056, 0). The orbital magnetic moments computed on a bandstructure

k-path and shown as colors in the presented bandstructures were calculated by summation over

2300 spinor states. Within the GW-BSE calculations we used a summation over 2000 spinor

states. GW corrections for the orbital magnetic moments were calculated using DFT energies

in the denominator of Eq. 3 and then applying a GW-based scissors shift to correct the energy

gaps at the K̄ point to the computed GW gaps. Figure S2 shows the computed orbital magnetic

moments within DFT and with the corrected GW-based scheme. Here, magenta dots show the

orbital magnetic moments calculated with DFT energies in Eq. 3 and the orange dots correspond to

the orbital magnetic moment calculated with the GW-based scissors-shifted energies. The valence

band is shown by the dashed grey line. All exciton magnetic moments were computed with the

GW-based method.

The spin magnetic moments were calculated using:

mspin
nk = − ege

2me

⟨ψnk|σz|ψnk⟩ , (4)

where e is an elementary charge and ge is the free electron g-factor. All presented calculations of

the magnetic properties were performed assuming a magnetic field perpendicular to the monolayer

plane, in the ẑ direction. σz is the Pauli matrix in the ẑ direction and the expectation value was

calculated using Quantum Espresso. The total (net) magnetic moment was then evaluated through

the summation of the orbital and spin parts,

mnk = morb
nk +mspin

nk . (5)

The results of the different components of the magnetic moment are shown in Fig.S3. Figure S3a

shows the convergence of the orbital magnetic moment with respect to the number of bands used

in the summation in Eq.3 for 4 pristine-like bands and 4 in-gap defect bands (shown in different

colors), at point . Figure S3b shows the orbital magnetic moment by color on a chosen k-path.

Figure S3c shows the spin magnetic moment along the same k-path. Figure S3d shows the total

magnetic moment, calculated by adding the orbital and the spin parts, on the same k-path.
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FIG. S2. Orbital magnetic moment of defect-MoS2 at K̄ of different bands using two different energies

in Eq.3, DFT energies for all bands (magenta) or DFT energies for occupied bands and a scissors shift

correction to the unoccupied bands (orange). The summation in Eq.3 was carried over 2300 bands. The

valence band is shown by the dashed grey line.
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FIG. S3. (a): Convergence of the orbital magnetic moment at point for different bands, with the number

of bands taken for the summation in Eq.3 for neutral-charge MoS2 supercell with a sulphur vacancy. (b):

Orbital magnetic colored on a band structure, calculated using Eq.3 with 2300 bands in the summation. (c):

Spin magnetic moment colored on a band structure, calculated using Eq.4. (d): Total magnetic moment

colored on a band structure, calculated using Eq.5. The calculation of the orbital magnetic moment in

this figure is with DFT energies with a k-independent scissors shift correction using GW results for the

unoccupied bands.
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FIG. S4. Total magnetic moment in supercells with different total charges, colored on DFT bandstructures.

The calculations here were done only within DFT, without scissors shift or other GW results.

III. Effect of defect charging

Figure S4 shows the DFT bandstructure of the examined MoS2 with chalcogen vacancies, and

upon electronic charging with a total charge of ±2 and ±4 per vacancy, in units of electron charge.

Colors represent the total magnetic moment of each band at each k-point, similar to Fig S3. The

charging mostly change the position of the defect bands relative to the pristine-like bands and

affects the pristine band shape, most notably in the ±4 systems. In the -2 charged system, the

occupied defect bands are lifted in energy compared to the pristine-like valance band, throughout

the Brillouin zone. This lifting removes the mixing of the occupied defect band with the pristine-

like bands at the valence region. This is expected to reduce the exciton mixing of low-lying,

defect-induced excitons; However, as we discuss in the main text, the Ā region mixing is expected

to remain.
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