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The spin quantum Hall transition (or class C transition in two dimensions) represents one of the few
localization-delocalization transitions for which some of the critical exponents are known exactly. Not known,
however, is the multifractal spectrum t,, which describes the system-size scaling of inverse participation ratios
P,, i.e., the ¢ moments of critical wave-function amplitudes. We here report simulations based on the class C
Chalker-Coddington network and demonstrate that , is (essentially) a quartic polynomial in q. Analytical results
fix all prefactors except the quartic curvature that we obtain as y = (2.22 4 0.15) x 1073, In order to achieve
the necessary accuracy in the presence of sizable corrections to scaling, we have analyzed the evolution with
system size of the entire P;-distribution function. As it turns out, in a sizable window of g values this distribution
function exhibits a (single-parameter) scaling collapse already in the preasymptotic regime, where finite-size
corrections are not negligible. This observation motivates us to propose new, original approach for extracting
7, based on concepts borrowed from the Kolmogorov-Smirnov test of mathematical statistics. We believe that
our work provides the conceptual means for high-precision investigations of multifractal spectra also near other
localization-delocalization transitions of current interest, especially the integer (class A) quantum Hall effect.
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I. INTRODUCTION

The Altland-Zirnbauer classification of disordered metals
exhibits several symmetry classes that allow for insulating and
metallic phases, which are separated by critical points or crit-
ical lines. Prominent examples include the integer, spin, and
thermal quantum Hall effects in classes A, C, D or the Ander-
son transition in the symplectic class AII [1]. A distinguishing
feature of these transitions is the statistics of the amplitudes of
critical wave functions v (r), which is conveniently described
by their moments, i.e., the inverse participation ratios (IPR)
P,(L) = f dr|y (r)|?9. For critical wave functions, the scaling
of the average IPR with the system size L,

Py(L) ~ L7, ey

defines the set of multifractal exponents t,; the overline indi-
cates a combined averaged over a narrow spectral window and
an ensemble of disorder configurations (‘“samples”).

The 7, spectrum is of interest because it is a charac-
teristic fingerprint of a critical state and the corresponding
field theory. For instance, a long-standing conjecture by Zirn-
bauer [2] for the critical theory of the class A transition,
which has undergone a recent refinement [3,4], implies that
the multifractal spectrum takes a particularly simple form: t,
is exactly parabolic in g. Therefore, the multifractal spectrum
is a standard means to compare field-theoretical predictions
and numerical simulations for microscopic models [1].

An important recent field-theoretic result [5-7] indicates
that the spectrum 7, for a transition in d dimensions has an
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exact representation
7g=d(g—1) = qxi +xg @

in terms of the exponents x, that describe the scaling of the
local density of states at criticality

pa(r) ~ L™ 3

Crucially, under very general conditions the exponents x,
obey a reciprocity relation [6-8]

Xg = Xgr—gs 4)

with ¢* taking different values for different symmetry classes,
e.g.,q* = 1 forclass A and ¢* = 3 for class C [6]. Even more
intriguing is the result of Refs. [6,9-11] according to which
reciprocity is a property not just of the exponents but of the
entire correlator itself:

pi(r) = pe—4(r), )

in localized, delocalized, and critical regimes. This remark-
able statement reflects a Weyl symmetry that is a property of
the corresponding o -model descriptions [6].

Inspired by the recent conjecture [3,4], in this paper we
address the question of whether parabolicity of the multi-
fractal spectrum could be a generic feature of quantum Hall
transitions. Rather than investigating the class A transition
considered by Zirnbauer et al. [3,4], we here focus on class
C, i.e., the spin quantum Hall transition. Here, several open
questions need to be addressed: (a) Taken at face value, the
earlier numerical work on the class C transition suggests
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pronounced deviations from parabolicity in the anomalous
exponents A,=1, —d(q — 1) [1,12]. At present, it cannot be
safely excluded that the observed deviations are artifacts due
to finite-size effects that have not been included in the earlier
data analysis. Specifically, we have exact results for the local
density of states (LDoS) exponent x; = % and for the density

correlator x, = % [12,13]. Also at ¢ = 3 an exact statement
has been obtained corresponding to x3 = 0 [12]. While all
these results are consistent with the reciprocity condition
X4 = X34 and a putative parabolic form x,(]p) = %q(3 - q),
they are not sufficient to rule out quartic (and higher) terms
in g(g — 3). (b) The validity of the reciprocity relation has not
yet been established numerically for class C. (c) Further, we
also address aspects of class C criticality that have received
less attention in the past, most notably the set of tail exponents
¢, that describes rare fluctuations with extremal IPR values.

There is one more consideration of a methodological kind
that motivates us to scrutinize the class C transition once
again. In contrast to class A, at the class C transition two non-
trivial exponents are known analytically. This is very helpful
for the analysis of simulation data because it gives reference
points with respect to which finite-size effects can safely be
quantified. We thus may use class C criticality as a labora-
tory to test known and explore novel approaches for fitting
of critical exponents in the presence of sizable finite-size
effects. In particular with an eye on open questions, e.g., in
connection with the class A transition, such methodological
advancements would certainly be welcome.

We briefly list our most important results obtained from
simulations within the framework of the class C Chalker-
Coddington network [13,14]:

(1) The reciprocity relation x, = x3_, as well as the an-
alytically predicted exponents are reproduced with excellent
accuracy: x, = 0.2504 &£ 0.0008; x3 = 0.002 £ 0.005 (within
an accuracy of 0.2%).

(i1) Quartic (and possibly higher) deviations from a

parabolic shape X’ = ¢(3 — ¢)/8 exist,

xg = xP[1 4 8y,(g — (g — 2)],

with 8y, ~ 0.0178 4 0.0012.

(iii) The tail exponents take values ¢, ~ 2¢|q(q —
D', & =4.5+0.5forg € [0, 3].

(iv) Within the framework of the o model, i.e., by virtue
of Eq. (5), the ratios

P,(L)

ro(L) == L@—x)2q—4") ;
! Py (L)

Q)
are not expected to exhibit corrections to scaling. Our data
does not conform with this expectation; it exhibits dis-
cernible finite-size corrections r, (L) = r}(1 + r(sl)L’y +--0)
with y =~ 1. Such corrections reflect microscopic features of
lattice models that the coarse-grained scale of the o model is
ignorant of by design. In the present context they indicate that
the o model’s Weyl symmetry is an emerging property.

(v) Traditionally, the ensemble-averaged IPR has received
most of the attention because it is an object that appears natu-
rally in quantum field theories [15] where it corresponds to a
well-defined scaling operator. We here investigate the scaling
properties of the entire IPR-distribution functions P,. Because

they are known to be more sensitive to finite-size effect, they
lend themselves for sensing of these. Actually, we find that the
distributions satisfy a nontrivial scaling relation

A oo M
Pq(Aq;L) = Y Pq <)\ {Aq - Cq} + Cq)a @)
q q

valid within its bulk region; here, Ay(L) =1InP,L%, k;, g
constants, and A,,(L)/)»Z =14+0UL™).

(vi) We propose a methodological advancement in the
analysis of finite-size effects on the IPR scaling that relies
on a standard parameter-free statistical test, the Kolmogorov-
Smirnov test [16]. It allows to extract 7, from the flow of the
entire IPR distribution by fitting only a single parameter, even
in the presence of significant finite-size correction.

II. MODEL AND METHODS
A. Model and method

We consider the version of the Chalker-Coddington net-
work (CCN) [17] adapted to the spin quantum Hall transition
(SQH) [13,14,18-20]. Since the model has been described
extensively before [1,14], we allow ourselves to be brief.
The class C network model consists of scattering nodes X
arranged on a square lattice of size L?/2 nodes. Neighboring
nodes are connected by unidirectional links with opposing
pairs incoming and outgoing. Every link carries two spin
channels o € {%} that mix while propagating along as pre-
scribed by mixing matrices U;, chosen at random from a
SU(2) distribution but fixed for every link /. Nodal scatter-
ing for an incoming link is left or right; it is incorporated
by orthogonal scattering matrices S diagonal in spin space
S* =S¥ @ SE. At criticality, scattering to the left and right
occurs with the same probability p = %

The network dynamics is mediated by the unitary network
operator U; it is the direct product of the mixing matrices U,
and the nodal scattering operators S*, and it describes the
evolution of the set of link probability amplitudes {y;, ¥;_},
1=1,...,L?% in discretized time [21,22]. The eigenvalues
of U appear in pairs, exp(Lie). We construct U for a given
disorder realization and use a variant of the Lanczos algorithm
to extract six eigenstates |W) corresponding to the three pairs
of eigenvalues closest to unity. For the statistical analysis we
employ one of the eigenvectors with eigenvalue closest to
unity; the remaining two eigenstates are used as consistency
check (see Appendix, Sec. A 3). We simulated networks with
linear system sizes L = 16,24,32,...,1024 on a toroidal
geometry and considered ~107 samples for the smallest and
~10% samples for the largest system size (see Appendix,
Sec. A 1 for more details).

B. Observable

In lattice or network models there can be different micro-
scopic observables that all flow towards the same macroscopic
object after coarse graining. A typical example is the IPR
in the CCN model, where the local weight per link can be,
e.g., either [y | or |1/_|? or the sum of both. All these local
weights give rise to different flavors of the IPR. The differ-
ence will become manifest when rare events are considered:
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FIG. 1. Probability distribution P(In P, L) of the IPR for g = 2,
presented for several system sizes L = 16, ..., 1024.

roughly speaking, a link with a particularly low weight is a lot
more probable if just one amplitude is assigned to the link.

The weight we chose to implement is a physical observ-
able, i.e., the occupation per link:

q
PLy=)" (Z |1ma|2> : ®)
1 o

with conventional normalization P (L) = 1. In the Appendix,
Sec. A4, we consider other flavors of IPR and show that the
different weighting does not affect asymptotic scaling proper-
ties.

III. SELECTED PAIRS OF g VALUES

A. Finite-size effects at ¢ =2 and 3

We begin the presentation of our numerical results with
the IPR at ¢ =2 and 3 because in these cases 7, is known
analytically: ©, = % and 73 = %. Therefore, the irrelevant
corrections to the scaling are readily exposed when consid-
ering reduced IPRs, P;L% with j = 2, 3. The understanding
here achieved we then will transfer to the case of general g

values.

1. Caseq =2

Figure 1 shows the evolution (“flow”) of the distribution
function P, of In P,(L) with system sizes. The typical be-
havior is seen: the distribution becomes shape invariant under
shifting at largest system sizes. This shape invariance is gen-
erally considered to emerge only very close to the critical
point [23]; therefore, the flow of the shape itself can be consid-
ered an indicator of the closeness to criticality and therefore is
of interest to us, here.

To monitor the shape evolution we analyze the system-size
dependency of its width

o,(L) = [[P,(L) — P,(L)IA1'/?, ©)

the result is displayed in Fig. 2. Another descriptor is the
peak value h,(L) (“height”) of the distribution, also shown
in Fig. 2. Due to statistical fluctuations, h,(L) was obtained
from polynomial fits to the distribution dome, applied at each
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FIG. 2. Evolution of the shape of the IPR distribution P, with
increasing system size L, monitored by its width 0,(L) and height
h,(L). Error bars represent statistical uncertainties due to random
fluctuations and fluctuations based on fit ranges. Also shown is the
residual shift of the maximum of the distribution of In L2P, (“re-
duced distribution”).

L separately. The fitting interval was identified by compar-
ing the mean deviation for cubic and quartic fits. Due to
normalization, the system-size variation of the inverse width
o, (L) and the height hq(L) is identical in the limit of large
L. Consequently, deviations from this behavior are indicative
of preasymptotic changes in the shape of P,.

The growth of 0,(L) with increasing L in Fig. 2 accounts
for the enhanced variability of local wave-function ampli-
tudes, which in turn reflects the gradual unfolding of the
localized character of the wave functions. Similar finite-size
corrections as seen in height and width also manifest in the
position and, hence, in the flow of the average IPR, P(L). For
illustration we define the reduced peak position redP, (L), i.e.,
the position of the peak of the distribution of In(L™P,). (The
shifted argument implies subtracting the “translation” with
L™.) For the reduced distribution P,(In(P,L™); L) a scaling
collapse is expected in the limit L — oo and indeed observed
in Fig. 3. The corresponding peak position redP,(L) as ex-
tracted from Fig. 3 is also displayed in Fig. 2. Its saturation at

101 F T T T T T T =
L
e 16e 24
e 32e 48
S10-1E o 64e 96 |
’\1 e 128192
g‘ e 2560384
~ e 512768
! , 01024
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@:‘ e F
107 q
-0.5 0.0 0.5 1.0 1.5 2.0 2.5
In(P,L™)

FIG. 3. Probability distribution P,(In P,L™, L) (“reduced dis-
tribution”). At large system sizes a scaling collapse is observed,
indicating that the asymptotic scaling regime has been reached.
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FIG. 4. Corrections to scaling for the reduced moment PL™
highlighting finite-size effects.

large L indicates that our data are indeed consistent with the
expected theoretical exponent value.

A visual inspection of Fig. 2 suggests that the (inverse)
width 1/0,(L) and the peak position redP,(L) exhibit a con-
certed flow towards criticality. A more quantitative analysis
proceeds by stipulating a form

N,
o (L) = aq*(l +Y oL ) (10)

j=1

and similar for h,(L) and redP,(L). The specific form of the
expansion is motivated by two facts: First, the IPR is a pure
scaling operator [8], so that all observables deriving from it
exhibit the same set of irrelevant exponents y. Second, we
accommodate a single irrelevant scaling field, so only a single
(irrelevant) exponent y > 0 appears. The details of the fitting
procedure have been relegated to the Appendix, Sec. A 2. The
extensive analysis yields two important conclusions: (i) good
fits are obtained with N, = 2; these fits are stable, in particular,
against variations in the raw-data set and with N, =1, 3. (ii)
The irrelevant exponent is obtained with best accuracy in
the window ¢ € [0, 2] where it takes values close to unity,
y=10+£0.2.

Finite-size effects on the average IPR P5(L) deserve a spe-
cial attention. Remarkably, while the peak of the distribution
function is seen to flow to the left in Fig. 3, an evolving
power-law tail strengthens the right-hand side weight. Both
effects cancel in the average Py(L) to a surprising amount
as seen in Fig. 4. It displays discernible, but weak finite-size
corrections of the order of 0.1% within our window of system
sizes.

For better understanding, we discuss the presence of finite-
size corrections in P,(L) in the light of the reciprocity
relation (5). At g=2 we have the special situation that
L2Py(L) = ry(L), s = 1, since trivially Pj(L) = 1. This is
useful because the reciprocity relation implies that at least
within the framework of the o model the ratio r,(L) should not
exhibit any scaling corrections, so also L?P,(L) is predicted
to be independent of L. In Fig. 4 corrections to scaling are
seen, however; actually, from a microscopic perspective this
is hardly surprising since power laws are not expected to hold
in the limit where L approaches the lattice constant.

L i oL L ]
12 10 o 160 24
e 32e¢ 48

1071 F o 64e 96 3
e128e¢ 192

102k 0256 384 ]
\ e 512
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P3(In(P;L™), L)
3

10_6 —I 1 1 1 I—
20 00 20 40 60
In(P5L™)

FIG. 5. Data analogous to Figs. 1 and 3, here for ¢ = 3.

We elaborate on this observation: The o model has a large
(Weyl-type) symmetry; it eliminates corrections to scaling
already at its short-distance cutoff, so that a field-theoretical
perspective would predict a perfectly flat line in Fig. 4. We
interpret our data deviating from flatness as an indication
that the Weyl symmetry is, in principle, only approximate for
microscopic models, such as the CCN. Consequently, lattice
models can exhibit corrections to scaling also in observables
that are correction free on the o-model level. Conversely, the
fact that corrections in Fig. 4 are seen to be so weak impres-
sively illustrates how close the o model is to microscopic
representations of the class C transition.

The general importance of expansions such as Eq. (10)
motivates one more remark. The corresponding expansion
coefficients do not necessarily share the same sign. In fact,
we show in the Appendix, Sec. A2, Figs. 27 and 28 for
the specific example of o,(L) that the first coefficient ")

is likely negative, while the second one 0;2) is positive. As
a consequence, the effects of the first and second correction
terms partially cancel in a certain regime of system sizes
(“conspiracy”), so that finite-size effects are very difficult to
analyze. In the present situation this regime is narrow because
y&1, i.e., rather large; therefore, conspiracy is less relevant for
the class C transition. Since y as reported [1,24] for the class A
transition is much smaller, conspiracy is a more relevant issue
for the integer quantum Hall effect.

2. Caseq=3

For g = 3 an analysis analogous to g = 2 can be performed
based on the data shown in Fig. 5. Also in this case the gradual
evolution of P;3(In P;L%; L) terminates in a scaling collapse.
The flow of the peak width o3(L), height h3(L), and peak
position redP3(L) is depicted in Fig. 6. Its parametric analysis
in terms of irrelevant corrections to scaling, Eq. (10), consoli-
dates the picture developed above (see Appendix, Sec. A 2).

Also at g = 3 reciprocity predicts that the scaling correc-
tions for L™t P5(L), 13 + d=21 /4, vanish on level of the
o-model description. We infer from Fig. 7 that the finite-size
corrections seen in the microscopic model are pronounced,
10 times larger as compared to the case ¢ = 2. The relative
enhancement is not surprising: higher moments, i.e., larger ¢

235167-4



QUARTIC MULTIFRACTALITY AND FINITE-SIZE ...

PHYSICAL REVIEW B 103, 235167 (2021)

12_1 T T T T T T
“r. H-0.6
24F
11k : =4-0.7
22+t
L] ] o
5 © &
~ = " . 08E
200 10F e ‘
L[]
sk te o, H4-0.9
' 09F B
1 1 1 1 1 1

24 25 26 27 28 29 2 Il 0
L

FIG. 6. Data analogous to Fig. 2, here for g = 3.

values, probe more extreme wave-function amplitudes that are
much more likely to occur in bigger systems.

B. Deviations from parabolic multifractality
1. General considerations

After presenting an analysis of the structure of the finite-
size corrections at the class C critical point, we now turn to
the shape of the multifractal spectrum itself. Specifically, we
will investigate potential deviations from a parabolic shape

Vo = g — f;p)
T gg =D — lg— (¢* — DT
Xy — xf,p)

= , (11)
q(qg — D(g* — Plg — (g* — 1)]

with y, = y,_4. For class C, g* = 3 and T;p) =d(g—1)—

q/4 4+ q(3 — q)/8. The first two factors in the denominator are

standard [1]; they accommodate the trivial zeros of the numer-

ator. The second two factors reflect the reciprocity symmetry;

they appear in those universality classes for which g* differs

from unity. Obviously, we have y = 0 for exact parabolicity.
It is implied by Eq. (11) that

X, = 1q(3 — Il +8y,(q — (g — 2)1, (12)
- 0.665] ; )l
¢
3 ;
o
t
{ } {
0.660 |- poi f % [ | )
2‘4 2‘5 2‘6 2‘7 2‘8 2‘9 2 i 0
L

FIG. 7. Plot analogous to Fig. 4 highlighting finite-size effects in
the reduced IPR, P;L75, 73 = 2.
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FIG. 8. Probability distribution PP,(In P, L) of the IPR for g = %
(left) and g = % (right). System sizes: L = 16, ..., 1024.

while reciprocity symmetry suggests for the nonparabolicity
parameter y, an expansion of the form

vo=Y vVUqg—q /27 (13)

j=0

Stipulating a weak dependency of y, on g, Eq. (12) suggests
that deviations from parabolicity are relatively small within
the window ¢ € [1, 2] and more sizable outside. We therefore
continue the analysis with the pairg = 1, 3

20 2"

2. Reciprocity pair q = % and %

As in the previous cases of ¢ = 2 and 3 we begin with an
analysis of finite-size corrections visible in the raw data (see
Fig. 8). Again we focus on a reduced IPR, which we now
generalize to values away from g = 2, 3, so we investigate

(p) . . . .
L P,(L). Our motivation is that in the presence of parabol-

icity one would expect a scaling collapse of Pq(LT';p)Pq(L)).
The flow of P, of the reduced IPRs is parametrized in
Fig. 9.

The first information summarized in the three panels is that
the reciprocity pairs at largest system sizes exhibit an identical
scaling with respect to corrections to the system size. This
is best illustrated for the evolution of h,(L), but also o, (L)
is eventually seen to follow this trend. We take this as an
evidence that above L &~ 28 = 256 the finite-size corrections
are dominated by a single correction term L™>. The second
information is that beyond this scale L ~ 256 the reduced
position redP, (L) does not show a tendency settling towards a
horizontal line. We interpret this observation as evidence that
deviations to parabolicity exist.

Notice that these deviations as identified in Fig. 9 (inset,
bottom panel) are consistent with reciprocity in the sense
that redP,, g = % % tend towards sharing the same slope; we
highlight this important feature in Fig. 10 displaying the re-
duced average IPR for ¢ = %, % While finite-size corrections
occur in both traces, the curves are seen to follow a common

trend.

235167-5



MARTIN PUSCHMANN et al.

PHYSICAL REVIEW B 103, 235167 (2021)

l T T T T T T ] 1.8
22+
]
221 ) 116 2
L]
20+ .
1 1 Il 1 1 T ’ : ] 14
10_2 T T T T T T T
I 1035
241 L )
bc . 40.30 L;'
22F 7 -
10.25
T 1 1 1 1 1 1
T T T -0.35
-0.476
0.10+ ° -0.478
o . -0.480 1-0-40 "
& -0.482 =
© 0.05F -0.484 5
1-0.45
000f ¢ T T )
24 25 26 27 28 29 210 -0.50

FIG. 9. Convergence of the height h,(L) (top panel), the width
o0,4(L) (middle), and the reduced peak position redP,(L) (bottom) for
q= % and % with system size L. The inset shows the asymptotic
region in which the peak positions shift in parallel for both ¢ values,
consistent with reciprocity. The solid line (slope corresponds to a
y value 0.002244) is a guide to the eye indicating corrections to
parabolicity in 7, according to Eq. (12).

We remark that for g = % the data in Fig. 10 exhibit a clear
curvature to the right. In the case of parabolicity (y = 0), the
opposite trend is expected, i.e., a curvature to the left indicat-
ing a flow towards a horizontal line. We take this as further
evidence that nonparabolicity, though numerically small, is a
robust feature of our data.
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FIG. 10. Average IPR reduced by parabolic scaling relation for
the reciprocity pair g = % and % as function of the system size L.

The line is a guide to the eye with slope corresponding to a y value
of 0.002 244.
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FIG. 11. Data analogous to Fig. 2 for g = :i:z—lo, :I:%. Left panel:
normalized distribution height h,/hj as function L. The asymptotic
value k7 is 19.32, 89.35, 29.85, 99.47 for g = 41, &5, respectively.
Right panel: shift of the peak position with system size L. The solid

lines guide eye; the slopes correspond to a y value 0.002 244.

3. Caseq~0

We continue the analysis with a moment near zero, i.e.,
q= j:% and :I:}l, at which according to (12) corrections
to parabolicity are expected to become even stronger than

at g = % Due to the increased statistical uncertainty of the

symmetry partners g = %, %, we here focus on the small-g

regime. The trend that has announced itself already at g = %
here consolidates: In Fig. 11 the height 4,(L) shows a fast
convergence behavior that has a counterpart in the reduced
position redP, (L), only if a residual flow, and hence deviations
from parabolicity, are admitted. The scaling of the reduced
average IPR, I_Dq(L), confirms this picture (see Fig. 12).

4. Case of q € [1, 2]

As the final discussion of individual g values we consider
the symmetry' point g = % .and the pair g = f'w % arougd .it
as representatives of the region g € [1, 2]. The characteristic

flow parameters are given in Fig. 13.

q
-—0.20 —
L-—0.05 — 4
1.02 . 000 _—
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N
<
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0.99F T ]

2‘4 215 216 217 218 2‘9 2 i 0
L

FIG. 12. Plot similar to Fig. 4 for g = :I:zl—o, :I:% and g = :I:% in

logarithmic scale for both axes. Solid lines guide the eye with slope
corresponding to a y value 0.002 244.
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FIG. 13. Normalized distribution height &, /h; (left panel) and

relative shift of the peak position of the reduced distribution redP,

(right panel) as function of L for ¢ = %, % %. Error bars represent

statistical uncertainties due to limited ensemble averaging and fluc-

tuations based on fit ranges. The asymptotic value Ay is 16.35, 6.848,

3.942 for g = %, %, %, respectively.

The flow of h,(L) [and similar also for o,(L), not shown]
exhibits the familiar convergence consistent with y &~ 1. In
contrast, the reduced shift behaves in a nonmonotonous way,
which by itself does not suggest converged behavior. The
situation becomes clear after consulting Fig. 14. It shows that
the traces for g = %, % take the same slope at L 2 300, i.e., in
the regime where h,(L) saturates. The nonvanishing slope is
a manifestation of nonparabolicity. Also, it is seen that the
trace corresponding to g = % is intersecting with the other
traces exhibiting a larger slope. From this trace we extract

y3/2 = 0.002 20 4= .000 05 consistent with the other estimates.

1073

o)
[\
T

(p)

(Pyq(Lo) L

q -
+1.25
«1.50
A . <175

(L)L)~ In
5

24 25 26 27 28 29 210

In

FIG. 14. Average reduced IPR for g = %, %, % in log representa-
tion of both axes. The reference scale Ly = 2% = 256 is the beginning
of the asymptotic regime as indicated from the overlapping traces
of the reciprocity pair g = %, % and the convergence of the peak
shape (see Fig. 13). The asymptotic slope indicates deviations from
parabolicity, i.e., Ax,:=x, —xfip)‘ The asymptotic collapse of ¢ = %, %
reflects the symmetry with respect to ¢ = % Solid lines guide the

eye.
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FIG. 15. The function F, defined in Eq. (14). At system sizes L 2
Ly, Ly = 256 it displays the expected collapse of reciprocity pairs.

IV. ASYMPTOTICS OVER THE FULL SPECTRAL RANGE

We extend the findings made for selected g values over the
entire range.

A. IPR scaling and hypercollapse

For a global description of the IPR, we define a function
Fy(L) := 8 In[Py(L) L 1/Iq(3 — q)]. (14)
F,(L) is expected to scale as

xq—x,(]p)
Fy(L) ~ Fy(Lo) + -4~ 111
q q\0 43— q)/8 /Lo

= Fy(Lo) + 8y (g — 1)(¢ — 2)InL/L,

where Ly denotes a reference length that indicates the begin-
ning of the asymptotic scaling regime. The numerical data
corresponding to F, (L) is displayed in Fig. 15 with Ly = 256.
At L =~ L two traces that correspond to g values paired via the
reciprocity symmetry x, = x3_, coalesce within the numerical
error bars that represent statistical noise. By analyzing the
scaling of the entire distribution function we have argued
before that this is also the system size that indicates the onset
of the asymptotic scaling regime. Therefore, we interpret the
slope of F,(L) seen at L > Lg in Fig. 15, upper panel, as an
evidence for the existence of nonparabolic corrections in z,.
For quantitative estimates of nonparabolicity, we employ
the scaling ansatz separately for each g with fixed (universal)
y:
N,
Fq(L)LT‘f — A% Z a7, (15)

J=1

By varying the fit initial conditions, we ensure the conver-
gence to a global minimum. With this approach, we created
several sets by manually varying the fit range N,, and espe-
cially y. For the latter we considered values between 0.1 and
1.5. For these data sets we compared the overall fit quality
and checked the quality of the numerical agreement with the
exact values for ¢ = 2 and 3 (A1, = A1z = 0). In particular,
Atz = 0 provides a strong figure of merit to discriminate
between values of y. Based on the current data, we observe
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fixed y = 0.75. The horizontal line corresponds to 8y = 0.01795.
For comparison, earlier data by Evers et al. [20] for Az, is also shown
(solid blue line and open symbols).

reasonable fit parameters for 0.5 <y < 1.0. A set of fit pa-
rameters thus obtained for At is displayed in Fig. 16. Based
on the individual fit parameter At,, the quartic scaling factor
v, has been estimated; the result is also displayed in Fig. 16.

A remarkable property of the function y, thus obtained
is its weak dependency on its argument y, = y, with 8y =
0.0178 £ 0.0002; the error bars are discussed in the Ap-
pendix, Sec. A 2. This observation motivates the definition of
the scaling function

FyL) = Fy(L)/[(q — 1)(gq — 2)]

X, — x;w
(g—D(g—2)3—q)/8
= Fy(Lo) + 8y InL/Ly

~ Fy(Lo) + . InL/L

plotted in Fig. 17. It displays the striking feature of all reci-
procity pairs collapsing onto the same master curve, within
the numerical error bars (“hypercollapse’).

004 T T T T T T T
0.021 .
<)
w
< 0.00f 1
1Y
I L
3 -0.02} q A
= 0.25
= 0.50
-0.04 F 0.75
1.25
1.50
_006 1 1 1 1 1 1

24 25 26 27 28 29 2110
L
FIG. 17. The function F,(L) displays a nearly perfect scaling
collapse for all ¢ values listed (“hypercollapse”). The finite slope
of this trace is a manifestation of quartic terms in the multifractal
spectra. The hypercollapse indicates that corrections to quartic terms
are very small in the regime of g values here considered.

FIG. 18. Distribution height /; and inverse width 1/, as func-
tion of g. The scaling by |g(¢ — 1)| removes the trivial divergences
and zeros at ¢ = 0, 1. The two data sets are shown per observable
in order to illustrate the goodness of the fitting (see Appendix,
Sec. A 2). The lower panel shows the effective area hjo,".

B. Width o,(L) and height k(L)

As natural descriptor of the form of the distribution func-
tion P,(In P,;; L) we have employed the second moment o, (L)
and the peak height h,(L). Following Eq. (10) we analyze the
finite-size corrections for each ¢, thus estimating the fixed-
point values o, i;. Figure 18 shows the height A, and inverse
width 1/0, as function of the moment g reduced by the behav-
ior near ¢ = 0, 1; by definition: 1/h; = 0, 0 = 0. As readily
seen from the data, the product hyo, depends on g. It thus
is indicating a gradual change of the asymptotic shape of P,

with varying g.

C. Tail exponents

The evolution of the IPR distribution with g also mani-
fests its asymptotic regime where it is described by a power
law [1,23]

P,(P;;L) ~ P,(InP,;L)/P, ~ P, % (16)

with tail exponent &, (see Figs. 3 and 19 for illustration). The
asymptotic regime is given with P,/P;* < 1, ¢ € (0, 1) and
P,/P® > 1 otherwise.

Typical and average IPR. For ¢, > 1, the first moment
of the distribution exists, and hence the average ITq and the
typical value P;’® show the same scaling with the system size.
Contrary, at {, < 1 the moments will be dominated by the
upper bound of the integral, which depends on L, so average
and typical IPR will scale differently [1,23]. At the critical
point ¢;+ = 1, which separates both regimes, the Legendre
transformed 7, vanishes, f;+ = 0, where

01y

ox,
fq ::q%—fq:d—i-qa—qq—xq

1
=d— oq —yq' 3¢ ~ 124+ 1) +0(g"). (17)

235167-8



QUARTIC MULTIFRACTALITY AND FINITE-SIZE ...

PHYSICAL REVIEW B 103, 235167 (2021)
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In(P,L7) In(P,L7)

FIG. 19. Distribution P,(In[P,(L)L%]; L) at L = 1024 for repre-
sentative g values. The tail is seen to be approached from the peak
value passing through an inflection point. Figure 20 zooms into the
tail.

For y > 0, the polynomial has two real roots 4 in the case
y = 0. For the realistic value y = ﬁ, we obtain g* = —
2.714 and ¢’} =3.739. We mention in passing that the freezing
limit is given by dt,/0q = 0; it describes the upper bound in
q for the validity of Eq. (17) [1,23]. We estimate g. ~ 5.90 for
8y = 0.017 86, so the evolution at our considerations is safely
away from this limit.

Numerical estimates. Figure 19 shows the tail of the distri-
bution P, and the corresponding inflection point for selected
g values. A zoom-in on the corresponding tails is displayed in
Figs. 20 and 21. The data shown in these figures highlight the
difficulties encountered when trying to numerically estimate
the tail exponent ,: (i) The tail exhibits a slow evolution with
increasing system size L tending towards decreasing slope. (ii)
The power law is best developed far in the tails, where rare
events prevail and statistical noise is large. When fitting the
tail exponents, we have restricted the fitting window to the

10—t T T T

102

Pq(In(PyL"), L)

1 1 1
1.0 04 06 08 1.0 1.2
In(PyL7%)

FIG. 20. Evolution of the tails of the distribution
P,(In[P,(L)L™]; L) with increasing system size L=256, 512, 1024
at g = —%, % raw data shown in Fig. 19. The solid lines indicate
fitted power laws with ¢_o5 = 10.7(4) and ¢; 5 = 16.4(4); the red
dotted line indicates the fitting window.

. i
-0.4 -0.3 -0.2 -0.1 1.0 2.0 3.0
In(P,L7)

10—6

FIG. 21. Similar to Fig. 20, but for g = % (left) and g = 2 (right)
with {p5 = —35(1) and &, = 4.5(1).

regime in P, outside the inflection point. Because of (ii) the
numerical error bars are sizable, because of (i) our estimate
should be considered an upper bound, strictly speaking. The
results for the tail exponents obtained in this way are given in
Fig. 22.

Discussion. As seen already from the raw data, Fig. 19, ¢,
is a rapidly increasing function when approaching ¢ = 1 from
above. Moreover, it displays a change in sign at ¢ = 1 and,
similarly, also at ¢ = 0. These observations have motivated
us to plot in Fig. 22 the product {,q(g — 1), which is always
positive and appears to display a weaker dependency on ¢, at
least for g values sufficiently far away from ¢ = 0, 1. Near
these particular values, ¢, becomes very large and hence the
numerical estimates carry very large error bars. At ¢ > 1 the
exponents ¢, display the same qualitative behavior already
known from other Anderson transitions [1]: ¢, is decreasing
with increasing g for g > 1.

14 [ T T T LI
: ; mezsuietli ,//
I -— ly=2 /
12j*+++ e 4=3 / *+*—
= } /
T 10 et .
g r * + + * } t t //

FIG. 22. Tail exponents ¢, of the IPR distribution as defined in
Eq. (16). Three lines are also shown. There intersection with the data
trace indicates the ¢ value at which the tail exponent takes values
¢, =1, 2, 3. At g values larger than these the first, second, and third
moments of the IPR will be dominated by the integral boundaries
rather than by the bulk of the distribution.
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FIG. 23. Integrated distribution A5 (In[P,(L)L™]; L) before (left)
and after (right) abscissa rescaling about the common intersection
point c;= — 0.042 £ 0.004. Inset: vicinity of the crossing point. The
scale parameter abbreviates A, (L) := h3/hy(L) with hy(L) given in
Fig. 2.

V. COLLAPSE OF FINITE-SIZE DISTORTED
DISTRIBUTION FUNCTIONS

The shape of the distribution function P,(In P,(L)L%™; L)
exhibits sizable finite-size effects seen, for instance, in
Figs. 1, 5, and 8. In this section we present a heuristic single-
parameter rescaling of this distribution to the effect that all
traces seen, e.g., in Fig. 1, collapse onto a single master curve.

A. Single-parameter rescaling of distribution functions
We consider the integrated distribution function

InP,L%™
N, (In[P,(L)L™];L) = / dxPy(x; L), (18)
—0o0

s0 P,(x; L) = 8,N,(x; L). The species corresponding to g=2
is depicted in Fig. 23 and g = % in Fig. 24. The data are seen to
exhibit a common crossing point, e.g., In L™ ~ —0.042 +
0.004 in Fig. 23. Clearly, the existence of a crossing point of a
pair of traces corresponding to two neighboring system sizes
is expected. Also expected is a flow of the crossing point with
increasing system sizes towards a limiting value. Therefore, it
is remarkable that there is virtually no such flow discernible in
the inset of Fig. 23 even though the raw data, Fig. 1, do exhibit
sizable finite-size effects of the order of 20%.

The stability of the crossing point allows for an attempt at
a single-parameter rescaling of the abscissa in Fig. 23 with the
crossing point ¢, being the fixed reference position:

Ny(Ag(L);:L) = N (o (IHALL) — ¢} + ). (19)

where A, (L) = In[P,(L)L™]. A natural choice for the scale
factor A,(L) here introduced would be the (inverse) slope at
the crossing point. We note that in Fig. 23 the crossing point
turns out to be very close to the inflection point, where the
slope is given by the height i,(L). With this observation, we
adopt the definition A, (L)::h; /hg4(L) constructed so that )\:’; =
1.

FIG. 24. Similar to Fig. 23 but for g = % with the common
intersection point c¢ps= — 0.005 £ 0.002. Inset: integrated distri-
butions as they would have been obtained with y =0, ie.,
/\/E)_5(1n[Po_5(L)L’<(>.'§)]; L). The plot highlights the importance to ac-
count for quartic corrections to 7, to achieve the data collapse seen

in the right-hand-side panel.

As is demonstrated in Fig. 23, left panel, the rescaled
integrated distribution function (19) for g=2 exhibits a nearly
perfect collapse towards a master curve in a window of system
sizes L, that covers almost two decades. This is highly re-
markable because apart from reading out 4,(L) in Fig. 1 there
is no fitting parameter involved. Only at larger arguments
deviations from the master curve are visible for the smallest
system sizes.

A collapse of similar quality can be obtained also at other
q values, e.g., for q:% as demonstrated in Fig. 24. As also
shown for this case, a collapse can only be achieved if quartic
terms in 7, are accounted for: when stipulating y=0 traces
corresponding to different system sizes do not exhibit the
crossing point (inset Fig. 24).

Further discussion. To further investigate the heuristic
rescaling we here propose, we plot in Fig. 25 the distribution
functions shown in Fig. 3 after rescaling, which correspond
to the derivative of the traces shown in Fig. 23, right: while
the collapse in the bulk of the distribution function is close to
perfect, deviations in the tail can be seen also here.

The single-parameter ansatz (19) implies for the distribu-
tion function Eq. (6), i.e.,

AS A
. q q
Pq(Aq,L) = )\—q ,quo<)\’—q{Aq — Cq} + Cq>,
where the dependency of A,(L) and A,(L) on L has been
suppressed in our notation. The expression allows for an in-
terpretation of finite-size corrections as far as they affect the
bulk of the distribution rather than its tail; they manifest as a
“dressing” of the reduced IPR amplitudes

P, L ¢ — [P,Le )"/ . (20)

For the average amplitude we thus derive

FL(L) = e%ilh e / dxd = PE@). QD)
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FIG. 25. Distribution function P, shown in Fig. 3 here after
performing the single-parameter scaling transformation. The traces
correspond to the derivative of the integrated distribution N, shown
in Fig. 23 [see Eq. (18)]. The plot highlights the excellent collapse
seen in the bulk of the distribution and the lack thereof in the tails.

Upon expanding the right-hand side of Eq. (21) in A4(L) — A7
we recover the form (14). Judging from the excellent collapse
achieved in Figs. 23 and 25, the expression appears to have
the advantage that it partially resums the higher-order terms
in (14).

B. Exponent fittings via Kolmogorov-Smirnov test

The preceding analysis of the flow of distribution functions
motivates a fresh approach towards estimating multifractal
spectra 7, in the presence of strong finite-size corrections.
Based on field-theoretic arguments [25,26], the conventional
method follows Eq. (14) fitting the average IPR, Fq(L), with
a leading power and subleading corrections [1]. From a com-
putational perspective, a frequent problem with this procedure
is that fits are unstable due to a proliferating number of fitting
parameters.

Method. We here propose an alternative method for es-
timating exponents t,. It is simple and as compared to the
conventional approach it has the dramatic advantage that
except for 7, there is no other parameter that requires op-
timization. The main idea is to define a family of auxiliary
functions

Ny(In[P,(L)LT]; L),

with family parameter L; examples for two families that
differ by the choice of t have been depicted in Fig. 24.
With increasing L, family numbers become more and more
indistinguishable, if and only if T coincides with z,. To mon-
itor this evolution we define a distance between two family
members:

D (L, L';t) = max[Ny (AL (L); L) — Ny (AL (L) L)),
2

where we have abbreviated A (L) = In[P,(L)L*]. We em-
ploy this particular measure of closeness because it allows
us to adopt the Kolmogorov-Smirnov test [16] to as-
sess the statistical significance, traditionally called «, of
a distance obtained for a pair of two numerical data

TABLE I. Number of lattice realizations Ngmples (in units of
1000) as function of system size L.

L 16 24 32 48 64 96 128
Numpies(L) 9216 6136 6000 6144 6750 6000 6000
L 192 256 384 512 768 1024
Numpies(L) 6144 5582 5121 3632 2710 1930
sets:

@ (L, L', T)

_ Zexp (_ 2Nsamples(L)Nsamples(L/) QE(L, L,; ‘L’)) ’
Nsamples (L) + N, samples (L/)
(23)

where Ngymples denotes the number of disorder configurations

in the ensemble (see Table I). The “best guess” for 7, is given
by the parameter 7 that minimizes the distance between two
neighboring pairs L, L in the large-L limit taken at L' /L fixed.
A data point for the distance will be accepted if the corre-
sponding significance is better than a predefined level, e.g.,
1%: a < 0.01. As an illustration, Fig. 26 displays the typical
evolution of ®,(L, 2L; t) with increasing system size. Here a
quartic term manifests as the superior choice as compared to
a parabolic spectrum y = 0.

Discussion. The proposed approach to estimating 7, op-
erates by choosing a guess that brings the system-size flow
of P,(InP,L*) to a standstill in the limit of large L. The
advantage of this approach is that the goodness of the guess
can be read of from Fig. 26 without fitting: worse guesses
reveal themselves as compared to the better ones by leveling
off to saturated values of the pair distance D (L, L’; 7). Using
this technique we arrive at an estimate 8y;,,=0.01754-0.0010.

VI. SUMMARY AND OUTLOOK

The main goal of this work was to present an in-depth
analysis of multifractality and finite-size corrections for the
class C quantum Hall transition that could serve as a paradigm
for similar investigations in other symmetry classes. The sym-
metry class C lends itself most naturally for this purpose
because out of the full spectrum t, two nontrivial exponents,
i.e., g = 2, 3, are known analytically and therefore can serve
as a reference point for studying finite-size effects.

As compared to most earlier studies, our investigation has
not focused on average inverse participation ratios P, (L), but
rather on the flow with system size L of the entire distribution
function P, (In Py; L). As it turns out, the shape of this function
as far as its bulk is concerned is conveniently parametrized
by a single parameter, e.g., its peak value s,(L). We observe
that the distribution P, exhibits a scaling form that accounts
for finite-size corrections with 7, and h,(L) as the only input
parameters.

Embarking on this result, we have explored the poten-
tial of a different approach to finite-size corrections based
on the Kolmogorov-Smirnov test. The method is sufficiently
sensitive to allow us extracting 7, essentially without any
fitting to an accuracy good enough in order to reliably detect
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FIG. 26. Estimating the spectrum 7, adopting the Kolmogrov- ) 10 1500 Sy
Smirnov test. Upper panel: distance for a pair of IPR distributions
D,(L,2L;1,), defined in Eq. (22) at system sizes L and 2L for Hi
different 7, “guesses” with and without quartic terms: y = 0 (dashed m{ﬁﬂm‘n.
A . . . () 1 1 1 Phddd i 0
lines) and 8 = 0.01750 (solid lines). The “best estimates” for 7, are 0 1 2 3
q

those with smallest distances at largest system sizes. Lower panel:
significance level «, (L) as given in Eq. (23) for every distance given
in the upper panel. The horizontal line indicates significance levels
of 0.1%, 1%, and 10% (o« = 1073, 1072, 107").

nonparabolic components in t,: AT, = y,q(qg — 1)(g —
2)(g — 3). We obtain that y, is essentially independent of g
with 8y = 0.0178 &+ 0.0010 for g € (—0.5, 3). This outcome
satisfies the reciprocity symmetry.

We have confirmed these results by performing a standard
analysis of finite-size corrections based on fitting I_Jq(L) to
a leading power law and irrelevant corrections: ~L~%[1 4+
O(L7)]; irrelevant scaling indices could be reliably deter-
mined, y &~ 0.9 £ 0.3 within a window g € (—0.5,2); the
large-g bound is imposed by the loss of numerical stability
at g 2 2. The origin of this loss has been traced back to the
tail of the IPR distribution function; it is characterized by an
exponent ¢, which falls below two, {, < 2, at g > g7, so that
the second moment of the IPR distribution is dominated by
integral boundaries. The overall analysis fully confirms that
terms of higher order than quartic are strongly suppressed
in 7.

"lzhe versatile analysis techniques presented in this work
are designed to readily carry over to other critical points. As
an outlook, we mention that the quantum Hall transitions in
symmetry classes A [3,4] and AIIl [27] experience a resur-

FIG. 27. Parameters following Eq. (11) from fitting to o,(L) data
analogous to Figs. 2 and 6. Estimates of the goodness of fit ¥, (top
panel), irrelevant exponent y (second panel), and amplitudes aq("z)
(lower panel) are given for several fits with expansion order N, and
system size L.

gence of attention, recently. It will be highly interesting to
compare the critical behavior of these transitions that has been
addressed previously by Evers et al. [28] and Obuse et al. [29]
in greater depth, e.g., with respect to finite-size corrections on
distribution functions and with akin eye on the identification
of the critical field theory. Further, the Kolmogorov-Smirnov
test advocated in this work as a methodological development
is not without alternative in mathematical statistics. We here
have to leave it to future work to unravel the full potential
of this analysis method in the context of scaling and critical
behavior near Anderson and quantum Hall transitions.
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APPENDIX

1. Sample statistics

Table I lists the number of samples, Ngamples, for all (linear)
system sizes L considered. A number of N., = 6 eigenvec-
tors have been calculated per sample with eigenvalues taken
closest to unity. In a separate set of test calculations with
Neyv=4, 6, 12 we have ascertained that our results are not sen-
sitive to the choice of N.y; for a given disorder realization, the
results for the IPR agree to an accuracy better than 11 relevant
digits at L = 128.

For the statistics shown in the main paper only the eigen-
vector with eigenvalue closest to unity has been considered.
As we show in Sec. A 3, the other eigenvectors exhibit signif-
icantly larger finite-size corrections and therefore have been
discarded from the main analysis.

2. Details on the finite-size scaling analysis
a. Irrelevant scaling corrections: estimating y

Corrections to scaling of the observables o, (L) and h,(L)
have been analyzed based on the expansion (10), i.e.,

N,

j=1

where N, denotes the expansion order. For assessing un-
certainties in fitting parameters related to statistical and
systematic errors, different combinations of regimes in L and
N, < 3 have been considered, as well as fits with y kept
adjustable or fixed. Both observables o, and h, show a similar
behavior with respect to the irrelevant exponent y as well. We
here focus on the o,-based data.

In Fig. 27, we display the fitting parameters, goodness of
the fit %, exponent y, and two amplitudes o "), for various fit-
ting conditions. The estimates of different fits agree well with
the error bars; the goodness of fit suggests that best results
are obtained for (N, = 2; L = 32) and (1; 128). The results of
Fig. 27 are consistent with (11) for ¢ < ¢, ¢ ~ 2.7 in the
sense that in this regime the fit for y is nearly the same for
each moment g. At g 2 g%, fits deviate from this expectation.
Finite-size effects proliferate, which reflects in the fitting as
estimates for y reducing by a factor of 2; the respective ampli-
tudes 0" keep moderate values (see Fig. 27).

In order to explore the possibility of getting good fits
with y value situated in the interval y € [0.75, 1.25] also at
q 2 %, we have made further tests. The results for the fitting
parameters have been displayed in Fig. 28, where the cases
y = 0.75, 1.0 are compared. As is seen from the goodness of
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FIG. 28. Fit quality ¥ as function of the moment ¢ for a g-
independent irrelevant exponent y for several fits with expansion
order N, and data ranges. Similar to the previous Fig. 27, the plot
highlights that beyond a moment ¢, finite-size corrections no longer
follow the canonical expansion (12).
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fit, Fig. 28 top panel, including higher orders in L™ does not
seem to properly describe the finite-size effects in the regime
42 4q%

Taken at face value, the finite-size corrections to the vari-
ance appear to change their nature for moments crossing the
point g ~ g . We interpret this observation with an eye on
the tail of the distribution function P,(P,;L) discussed in
Sec. IV C. The variance o, as defined in Eq. (9) requires the
calculation of the second moment of the distribution, which
exists only if ¢, > 2. The observation suggests a precise defi-
nition of ¢, = 2, yielding an estimate ¢ ~ 2.7 based on the
results of Fig. 22. This estimate is consistent with the apparent
decrease of y that we witness in Figs. 27 and 28. We mention
that a moment similar to g7, which is associated with the
IPR variance, exists also for the IPR average. It is defined
as &;, = 1; at g > g, average and typical IPR cease to scale
alike with system size [1].

b. Estimating y upon including corrections to scaling

We perform an analysis of finite-size effects following the
conventional expansion Eq. (10) for the average IPR Fq The
main goal is to quantify deviations from parabolicity, 87, =
dx4, including finite-size corrections. Since above analysis
suggest a fixed exponent y ~ 1 only for moments g < g7, we
compare fits involving a range y € {0.5, 0.75, 1.0}. Figure 29

shows the multifractal exponent 7, obtained from such fits,

represented as deviation from parabolicity Az, = 1, — rq(p ),
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FIG. 29. Estimate of the nonparabolic multifractal content
Aty =1, — r{;f’) and the corresponding quartic curvature y, as func-

tion of g. Fits are based on IT,,LT;')) for several fit and parameter
ranges. The horizontal line marks 8y = 0.01795.

As one would expect based on the analysis of o,(L) above,
fitting gives consistent results for At, in the regime g < 2.
The resulting curvature amounts to 8y =~ 0.0179 with small
statistical error bars that, however, exhibit a significant g de-
pendence. We estimate 8y = 0.0178 £ 0.0012 based on the
error bars we obtain near g & 0.

With g approaching g3 ~2.7 from below, the error bars
are seen to proliferate dramatically. Importantly, within the
error bars the reciprocity relation At, = At3_, is seen to be
fulfilled in the range of moments investigated —% <g <35

3. Eigenvectors at neighboring energies

Per sample we calculate three pairs of eigenvectors with
eigenvalues nearest to unity (see Sec. A 1). The results in the
main paper include only one of these wave functions, i.e.,
the one with eigenvalue closest to unity. We here present a
brief analysis of the properties of the other two wave func-
tions with eigenvalues next nearest and next-next nearest to
unity.

Figure 30 shows the scaled IPR distribution function
Py(In[P,(L)L™];L) at g = % for all three eigenstates taken

Pos(In(PysL705), L)

....... 1o b b b s b 1y

-0.04 -0.02 0.00 0.02 0.0 0.06
In(PysL705)

-0.06

FIG. 30. Distribution functions Py s(In[Pys(L)L™5]; L) for g =
0.5 and L = 512, 768, 1024 obtained for three sets of eigenstates.
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FIG. 31. Similar to Fig. 17, but for the eigenstates with eigen-
values second nearest (upper panel) and third nearest (lower panel)
to unity. The “hypercollapse” happens at a larger length scale; we
changed the reference length Ly to 384 and 512 for second and
third eigenstate, respectively. The slopes of the guiding lines on both
panels as well as in Fig. 17 are equal.

at 8y = 0.00178. The excellent data collapse illustrates that
7, is the same for all three energies, despite the fact that P, is
not. The collapse is illustrated for a wider range of g values
in Fig. 31. It displays the auxiliary quantity F},(L) for the
second and third closest eigenstates. Similar to the case of
the first eigenvector, Fig. 17, also the second and third near-
est eigenstates exhibit the hypercollapse. However, for these
eigenvectors the finite-size effects turn out to be stronger; the

collapse is seen to occur only at larger system sizes, i.e., above
L =384 or 512.

4. TPR dependence on microscopic definition

By definition, the IPR is a sum over space of a local
measure x(r) taken to the power ¢: [ dr u(r)?. The definition
employed in Eq. (8) on the lattice amounts to ;u; = ) Y0 2.

TABLE II. Number of lattice realizations Ngmples (in units of
1000) as a function of system size L for the test calculation regarding
the microscopic definition.

L 16 24 32 48 64 96 128
Ngampres(L) 5000 5000 5000 5000 5000 1081 2518
L 192 256 384 512 768 1024

Nemples(L) 2383 1558 393 582
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FIG. 32. Lower panels show the flow of the height /5(L) and
maximum position redPys(L) as function of L. The latter is shown
with respect to the position of the largest system L = 512. The col-
lapse for L > 64 emphasizes the independence on the microscopic
details.

An alternative local measure is given by u; = [ |2, so the
statistical properties of the spin density are evaluated for

each component, separately. The local density of a given
spin direction is more sensitive to rare events as compared
to the local number density. We here present a sanity check
indicating that the multifractal spectrum is not affected by
this difference, at least not in the ¢ window of most interest
to us.

We define the spin-separated IPR

P =3 ) 1ol
| o

We have as usual Pq(isl) = 1 from normalization, while Pq(iso) =

2L? as opposed to P,—o = L?; the definition of 7, is unaffected
by this detail. Qualitative deviations between the scaling prop-
erties of P, and P;SS) are expected for g approaching more and
more negative values.

To illustrate similarities and dissimilarities, we have per-
formed a separate study considering systems up to linear
system size L = 512 (see Table II for the sample statistics).
The results of these calculations are summarized in Fig. 32
for the paradigmatic cases g = :I:%. The plot allows us to
draw several conclusions. (i) At positive g, the distributions
of P, and Péss) exhibit a very similar shape, represented by
hy(L) in the top row of Fig. 32. Likewise, the evolution of the
distributions with increasing system size is the same, confirm-
ing the same set of multifractal indices 7/,. Corresponding
evidence is given in Fig. 32; lower row that shows the flow

the peak position of the reduced distributions P, (In Pquép))

and P,(In P(;SS)L";p) ): after performing a rigid shift both traces
collapse indicating that the critical exponent is the same for
both measures. (ii) With respect to the critical exponent the
situation is seen to be similar at ¢ = —%, as illustrated in the
bottom row of Fig. 32. The form of the distribution func-
tions begins to change shape, however, as clearly displayed
in Fig. 32 (top row) by h_i,,(L). We take this observation as
a precursor for a qualitative deviation of the critical behavior
occurring at more negative g values.
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