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I. TRANSFORMATION OPTICS: 3D GENERALIZED INVERSION

In order to study the [quantum] dynamical properties of single quantum emitters placed in nanometric size metallic
cavities supporting localized surface plasmon-polariton (SP) modes we use transformation optics, a powerful and
intuitive technique successfully applied in the field of nano-optics in recent years (see recent reviews in Refs. [1]-[2]).
This theoretical approach will allow us to obtain insightful analytical expressions for the spectral density and spatial
profile of hybrid plasmon-exciton-polariton (PEP) modes in the quasi-static limit. As mentioned in the main text,
we will assume that the electric and magnetic fields are decoupled, i.e. ∇r × E(r) = 0, since the dimer size is much
smaller than the quantum emitter characteristic wavelength λE = 2πc/ωE. The present scheme provides as well an
efficient computational framework valuable in the thorough numerical study of the quantum dynamical properties of
PEPs at the single emitter level in metallic cavities with non-trivial Gaussian curvature, taking also into account the
lossy character of the SP excitations.
To begin with, we consider the generalized inversion based on Ref. [3], noted as J , and defined by

ϱ′ =
R2

T

(z − z0)2 + ϱ2
ϱ, (1a)

z′ − z′0 = − R2
T

(z − z0)2 + ϱ2
(z − z0). (1b)

Here, the non-primed variables describe the original frame (with inversion point z0 = z0ẑ), the primed variables
correspond to the transformed space (with inversion point z′0 = z′0ẑ), and R2

T is an arbitrary length scale. We also
define ϱ = (x, y) so that r = (ϱ, z) (and similarly for the primed variables). Note the additional − sign in Eq. (1b)
compared to the inversion transformation used in Refs. [4]-[5] which yields z′0 > 0 (we fix by construction z0 > 0).
Being a member of the family of inversion transformations in three-dimensional Euclidean spaces, the mapping

given by Equations (1a)-(1b) transforms the infinity in a given reference frame to the inversion point in the other
reference frame. It also maps a pair of metallic spheres, of radii R1 and R2 (see the left panel of Fig. I) into a system
of two concentric spheres centered at the origin of coordinates: an inner solid sphere, of radius R′

1, and a hollow outer
sphere, of radius R′

2 (see right panel of Fig. I). The gap between the spheres in the original frame, where the quantum
emitter is located (i.e. R2 ≤ R2 + zE ≤ R2 + δ) is mapped within the annulus region between the transformed
concentric spheres at positions far away from the inversion point.
For the transformation from the coordinate frame r → r′ = r′(r) = J r to preserve Maxwell’s equations (or, in

the long wavelength limit used here, Laplace equation) the components of the dielectric permittivity tensor must
necessarily verify the general relation [2]

ϵ′α′,β′(r′, ω) =
1

det Jr′
∑
α,β

(Jr′)α′,α(Jr′)β′,βϵα,β [r(r
′), ω], (2)

where (Jr′)α,α′ = ∂rα/∂r
′
α′ is the Jacobian matrix of the transformation. Note that Eq. (2) implies that, if in the

original coordinate system the metallic spheres and the dielectric medium are spatially homogeneous, the full system
becomes inhomogeneous in the transformed frame. Fortunately, this fact does not introduce additional complications
in the scattering problem for the electrostatic potential Φ′(r′) = Φ[r′(r)] since application of the electromagnetic (EM)
boundary conditions for the Laplace equation in each region of the transformed space trivially removes any spatially
dependent factor.
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FIG. I: Sketch of the inversion transformation that maps an spherical dimer nanocavity (left) into a concentric annulus geometry
(right), and vice versa. Note that the right panel shows a cross sectional view of the transformed geometry. The mapping also
modifies the original permittivities, which acquire an spatial dependence in the annulus frame given by Eq. (2). The dipole
source modelling the emitter is also affected by the mapping, and its primed counterpart can be expressed in the form of Eq. (3).
Importantly, the transformation does not alter the spectral characteristics of the original system.

II. GENERAL SOLUTION TO THE SCATTERING PROBLEM

Our strategy to obtain the EM Green’s function G(r, r′, ω), which describes the EM properties of the full system
(single emitter and plasmonic metallic dimer of radii Ri, with i ∈ {1, 2} and gap δ) is to take into account that
the transformation given in Eqs. (1a)-(1b) is still an inversion. Then, it is well known (see Refs. [4], [5]) that the
electrostatic potential has to be forcefully written as Φ′(r′) = |r′ − z′0|Φ̃′(r′) where Φ̃′(r′) is solution of Laplace
equation in the new transformed space, ∆r′Φ̃

′(r′) = 0. If the source is located on the ẑ axis and oriented towards the
same direction, µE = µEẑ, the physical system is rotationally invariant around that axis and we can express Φ̃′(r′)
as a sum of harmonic modes having the ẑ projection of the angular momentum m = 0

Φ̃′(r′) =
+∞∑
l=0

[
c1l

(
r′

z′0

)l

+ c2l

(
r′

z′0

)−(l+1)
]
Yl,0(θ

′, φ′) (3)

with r = (r′, θ′, φ′) being the position vector expressed in spherical coordinates and Yl,0(θ
′, φ′) the usual spherical

harmonics. From a practical point of view, the infinite series is made finite by imposing a cut-off value of the
orbital angular momentum, l ∈ [0, lmax], taking into account the convergence properties of Laplace expansions.
The electrostatic potential is now written as the combination of the source and scattered components, Φ̃′(r′) =
Φ̃′

s(r
′) + Φ̃

′ sc(r′), and the unknown scattering coefficients in each region are obtained by means of the reflection
matrix, R, once the dipolar source is expanded also in harmonic modes. The latter matrix relates the scattering
coefficients to the source coefficients by means of the matrix relation csc = R cs where csc and cs are block column
vectors containing the coefficients of the harmonic expansion in Eq. (3).
An essential step in our approach is thus to obtain the reflection matrix, defined as R := T−1S, where T and S

are, respectively, the scattering and source matrices. The latter are built from the application of the EM boundary
conditions for the electric and displacement fields in the annulus frame. The scattering matrix can be written in block
form

T =

(
T11 T12

T21 T22

)
, (4)

where each of the blocks Tij is a tridiagonal matrix of dimension (lmax +1)× (lmax + 1). In addition, it can be easily
checked that for a source located in the gap, the S matrix is block diagonal, S = Sij δi,j , with matrix elements related
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to the T matrix by means of the relation Sij = −Tij . The scattering matrix elements are given by

T11(l, l
′) = −δl,l′

[
(l + 1)r

′ 2
1 + l

]
r
′ l
1

+ (2l′ + 1)r
′ l′+1
1

[
A+(l

′ + 1)δl,l′+1 +A−(l
′ + 1)δl,l′−1

]
, (5a)

T12(l, l
′) = δl,l′

{
r
′ 2
1 − 1

ϵ̃(ω)− 1
−
[
(l + 1)r

′ 2
1 + l

]
eα(ω)

}
r
′ −(l+1)
1

+ eα(ω)(2l′ + 1)r
′ −l′

1

[
A+(l

′ + 1)δl,l′+1 +A−(l
′ + 1)δl,l′−1

]
, (5b)

T21(l, l
′) = δl,l′

{
r
′ 2
2 − 1

ϵ̃(ω)− 1
−
[
lr

′ 2
2 + (l + 1)

]
eα(ω)

}
r
′ l
2

− eα(ω)(2l′ + 1)r
′ l′+1
2

[
A+(l

′ + 1)δl,l′+1 +A−(l
′ + 1)δl,l′−1

]
, (5c)

T22(l, l
′) = δl,l′

[
l r

′ 2
2 + (l + 1)

]
r
′ −(l+1)
2

− (2l′ + 1)r
′ −l′

2

[
A+(l

′ + 1)δl,l′+1 +A−(l
′ + 1)δl,l′−1

]
. (5d)

together with the auxiliary functions

A+(l) =

√
(l + 1)2

(2l + 1)(2l + 3)
, (6a)

A−(l) =

√
l2

(2l − 1)(2l + 1)
. (6b)

Note that we have defined the reduced permittivity ϵ̃(ω) := ϵ(ω)/ϵD in Eqs. (5a)-(5d). This corresponds to the ratio
between the permittivity of the metallic spheres, ϵ(ω), and the permittivity of the dielectric medium in which they
are embedded, ϵD. As mentioned in the main text, the EM response of the metal is described by means of a local
Drude response function

ϵ(ω) = ϵ∞ −
ω2
p

ω(ω + iγ)
, (7)

where ε∞ is the high-frequency offset, ωp the plasma frequency of the electron gas and Ohmic losses are taken into
account through the Drude damping parameter γ (we consider silver nanospheres with ϵ∞ = 4.6, ωp = 9 eV and
γ = 0.1 eV, see Ref. [9]). From the reduced permittivity, we also define the function

eα(ω) :=
ϵ̃(ω) + 1

ϵ̃(ω)− 1
. (8)

For practical purposes, it also convenient to express the reduced radii r′i = R′
i/z

′
0 for i ∈ {1, 2} in terms of variables

which are defined in the original frame only. After some algebra using Eqs. (1a)-(1b) we get

r′1 =
1− ∆̃1

1 + ∆̃1

, (9a)

r′2 =
1 + ∆̃2

1 + ∆̃1

, (9b)

where

∆̃1 :=
δ + d

2R1 + δ + d
, (10a)

∆̃2 :=
δ

d
+

δ + d

2R2 − d
, (10b)
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Here d = R2 − z0, and the inversion point, z0, is related to geometrical parameters of the spherical dimer by the
relation

z0 =
(R1 +R2 + δ)2 +R2

2 −R2
1 −

√
δ(δ + 2R1)(δ + 2R2)(2R1 + 2R2 + δ)

2(R1 +R2 + δ)
. (11)

Finally, knowledge of the scattering coefficients allows us to write the scattered electrostatic potential in the quasi-
static limit and, as a consequence, the scattered electric field Esc(r) = ∇rΦ

sc(r) = ∇rΦ
′ sc[r′(r)] and the corresponding

EM Green’s function, Gsc(r, rE, ω) defined by the general relation [6]

Esc(r) =
1

ϵ0

(ω
c

)2
Gsc(r, rE, ω)µE, (12)

with rE = (R2 + zE)︸ ︷︷ ︸
rE

ẑ being the position of the quantum emitter measured from the origin of coordinates (center of

the sphere with radius R2 in the left panel of Fig. I).

III. ANALYTICAL EXPRESSION FOR THE SPECTRAL DENSITY

We now present a succinct derivation of Eqs. (2)-(4) presented in the main text. The spectral density of the
plasmonic gap cavity coupled to the exciton can be computed from the expression of the scattered EM Green’s
function evaluated at the position of quantum emitter, Gsc(rE, rE, ω) as

J(ω) =
Γ0(ω)

2π

[
1 +

6πc

ω
ImGsc

zz(rE, rE, ω)

]
, (13)

where Γ0(ω) is the spontaneous emission rate in vacuum at frequency ω. Going back to Eq. (12) and recalling that
µE = µEẑ we easily see that the crucial step in the analytical calculation of the spectral density is the evaluation of
the imaginary part of the ẑ component of the scattered electric field. In the original frame, this component is formally
expressed as

Esc
z (r) =

∑
α′

[
JrOr′(r)

]
z,α′ E

′ sc
α′ (r′)

∣∣∣
r′=r′(r)

, (14)

where Jr has matrix elements (Jr)α′,α = ∂r′α′/∂rα and Or′ is the matrix

Or′ :=



x′

r′
x′z′

ϱ′r′
−y′

ϱ′

y′

r′
y′z′

ϱ′r′
x′

ϱ′

z′

r′
−ϱ′

r′
0

 , (15)

which still has to be transformed back to the original coordinate frame by using the inverse transformation, J . Here
we remind that r′ = (ϱ′, z′), ϱ′ =

√
x′2 + y′2 and r′ =

√
ϱ′2 + z′2.

To obtain physical insight, it very is natural to consider a small gap approximation for which δ ≪ R1, R2. This is
obviously a limiting case but it allows to capture very well the strong coupling physics in the near and extreme near
field regime. Under the assumption of small gap-to-radius ratio, it can be shown that the diagonal matrix elements
belonging to the blocks Tij (with i ̸= j and i, j ∈ {1, 2}) present vanishing terms since r

′ 2
i − 1 → 0 (note that this

actually takes place in the transformed frame). As a consequence, the R matrix can be proved to present diagonal
blocks with matrix elements

Rij(l, l
′) ≃

δi,j − (1− δi,j) e
α(ω)

[
1 + (i− j)∆̃i

1 + ∆̃1

](i−j)(2l+1)
 fl

(
1 + ∆̃2

1− ∆̃1

, ω

)
δl,l′ , (16)

and

fl(r, ω) :=
1

e2α(ω)r2l+1 − 1
. (17)
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When the relevant energies associated to the exciton are close to those of the localized surface plasmon-polariton
resonances and γ ≪ ω, we can work in the so-called high-quality resonator limit [7] which allows us to express the
spectral density as a sum of Lorentzian modes J(ω) ≃

∑+∞
l=0

∑
σ=±1 Jl,σ(ω) with

Jl,σ(ω) =
g2l,σ
π

γ/2

(ω − ωl,σ)2 + (γ/2)2
, (18)

similar to the case of the planar metal surface [8] and the single sphere [9]. In the same way, all the surface plasmon-
polariton resonances of the nanocavity show the same spectral width controlled by the Drude losses only. The localized
surface plasmon-polariton resonant energies depend crucially on the geometrical parameters of the nanostructure, the
high-frequency offset and the dielectric background properties, having the following simple functional form

ωl,σ =
ωp√

ϵ∞ +Ωl,σϵD
, (19)

with

Ωl,σ =

(
1 + ∆̃2

1− ∆̃1

) 2l+1
2

+ σ

(
1 + ∆̃2

1− ∆̃1

) 2l+1
2

− σ

. (20)

Importantly, the analytical results show that the exciton placed at the plasmonic gap cavity can be coupled to two
different mode families: symmetric modes with resonant energies lower than the pseudo-mode energy, ωl,+ . ωPS,
and antisymmetric modes with resonant energies larger than the pseudo-mode energy, ωl,− & ωPS [see Fig. 4(a) in

the main text]. Furthermore, it can be observed straightforwardly that since r12 := (1+ ∆̃2)/(1− ∆̃1) > 1, Ω∞,σ → 1
for both symmetric and antisymmetric families. The convergence towards this value is very fast since the function
Ωl,σ has a power law dependence on the orbital angular momentum l. In this limit, all the resonances are localized
at the surface plasmon-polariton asymptotic frequency characteristic of the Drude metal

ω∞,± =
ωp√

ϵ∞ + ϵD
, (21)

the latter being roughly equal to the pseudomode frequency ωPS . ω∞ for very small gaps.
The coherent coupling factors g2l,σ = g2l,σ(µE, zE , R1, R2, δ) between the exciton and the localized surface plasmon-

polaritons can be expressed in compact form as

g2l,σ =
µ2
Eωp

4πϵ0~∆3

(
ωl,σ

ωp

)3
σ

2

ζ4

1− ζ
η+l,σχl(−ζ)χl+1(ζ)

[
1 + Cl,σ(ζ, ∆̃1, ∆̃2)

]
, (22)

with

Cl,σ(ζ, ∆̃1, ∆̃2) :=
1

2

η−l,σ

η+l,σ

[(
1− ∆̃1

1 + ∆̃1

)−(2l+1)

|1− ζ|2l+1 χl(−ζ)

χl+1(ζ)
+

(
1 + ∆̃2

1 + ∆̃1

)2l+1

|1− ζ|−(2l+1)χl+1(ζ)

χl(−ζ)

]
. (23)

Here, we have defined the reduced parameters

χl(ζ) := 1 +
lζ

1− ζ
, (24a)

ζ :=
∆

rE − z0
, (24b)

η±l,σ :=

(1± 1)

(
1 + ∆̃2

1− ∆̃1

) 2l+1
2

− σ(1∓ 1)

(1 + ∆̃2

1− ∆̃1

) 2l+1
2

− σ

2 , (24c)
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FIG. II: (a) TO exact (red dashed-dotted line) and analytical (green solid line) spectral density for the geometry modelling
the experimental samples in Ref. 10 [see inset of panel (a)]. Dark blue dashed lines plot the 5 lowest terms in the Lorentzian
decomposition of the analytical J(ω). (b) Coupling constants for the various even (dark blue) and odd (orange) SP modes
contributing to the spectral density in panel(a). As expected (see main text), the contribution due to odd modes is negligible.

and introduced the length governing the volume scaling of the spectral density

∆ :=
2(δ + d)

1 + ∆̃1

. (25)

The structure of the coherent coupling factors given in Eq. (22) admits the following interpretation. The first part
is associated with the diagonal blocks of the reflection matrix, Rijδij . As such, we can interpret this term as being

the contribution to the scattered field from the two independent spheres. The term Cl,σ(ζ, ∆̃1, ∆̃2) is a consequence
of the non-trivial off-diagonal blocks in the reflection matrix, Rij(1− δij). Therefore, it describes a cooperative effect
between the two nanospheres due to the presence of the quantum emitter, which manifests in the spectral density.
To support this interpretation, we note that both contributions have necessarily to vanish for l → +∞, η±∞,σ → 0

(essentially, for convergence reasons). However, the − term, η−l→+∞,σ ∼ r−l
12 , vanishes much faster than the + term,

η+l→+∞,σ ∼ 2r
−l/2
12 . Since for higher orbital angular momenta only the strongly localized SPs survive, the contribution

due to Cl,σ(ζ, ∆̃1, ∆̃2) has to represent the plasmonic hybridization across the gap of the nanocavity.

IV. COUPLING STRENGTH CALCULATION FOR NATURE 535, 127 (2016)

In this section, we apply our TO approach for the calculation of the exciton-plasmon coupling strength corresponding
to the different SP modes supported for the experimental sample in Ref. 10. Mimicking the experimental conditions,
we consider a sphere with R2 = 20 nm separated from a flat surface (R1 ≫ R2) by a δ = 0.9 nm gap. The background
permittivity is set to ϵD = 1.96, and the gold permittivity is described through a Drude model with ϵ∞ = 9.7,
ωp = 8.91 eV and γ = 0.08 eV (parameters taken from Ref. [11]). The QE, placed at the gap center, is modelled
through a dipole source with µE = 3.8 D = 0.079 e · nm. Note that µ2

E/R
3
2, zE/δ and δ/R2 (all magnitudes that play

a key role in J(ω), see main text) are very similar to those considered in Figure 4(d).
Figure II(a) plots the spectral density for the system above, obtained from both exact (red dashed-dotted line) and

analytical (green solid line) TO calculations. The 5 lowest terms in the Lorentzian decomposition of the latter are also
shown in dark blue dashed lines. Note that these correspond to even modes (due to the central position of the emitter,
the contribution of odd SPs to J(ω) is negligible, see main text). The exact TO spectrum overlaps with J(ω) obtained
from full EM simulations (not shown here). This is due to the fact that, contrary to the cavity considered in Figure 4
of the main text, the quasi-static approximation is very accurate for the experimental (nanometric-sized) geometry
in Ref. [10]. The spectral density presents a dipolar SP maximum at 1.85 eV (670 nm), in very good agreement with
experiments, 665 nm. Our calculations yield a Purcell factor equal to 4.3 · 106 for this SP resonance, a value which is
also in accordance with measurements (3.5 ·106). As discussed in the main text, the small gap approximation inherent
to our analytical TO approach, leads to red-shifted spectral density maxima at low frequencies. Thus, the analytical
dipole SP peak in Figure II(a) emerges at 1.5 eV (827 nm), and the corresponding Purcell enhancement is 3 · 106.
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Figure II(b) renders the coupling constants, gl,σ, versus mode index l, for the different SP modes contributing to
the spectra in panel (a). Even and odd modes are rendered in dark blue and orange dots, respectively. As anticipated,
the coupling strength for odd SPs is negligible. Note that the coupling constants are obtained for the analytical J(ω).
For the lowest, dipolar, SP mode, we obtain g0,+1 = 19 meV. A Lorentzian fitting to the corresponding maxima for
exact calculations yields gfitdip = 36 meV. The difference between these two theoretical results (∼ 20 meV) originates
from the inherent inaccuracy of the analytical approximation for the lowest SP modes [see for instance Fig. 4 (a) in
the main text or Fig. II (a) in this document]. The theoretical value is still in discrepancy with the measured one,
gexp = 90 meV. In the following, we explore if we can gain insight into this deviation of our predictions from the
experimental results.
Our theoretical findings (see main text) indicate that dark, higher multipolar SP modes play a key role in plasmon-

exciton coupling in gap nanocavities. We can estimate the coupling strength corresponding to the pseudomode
apparent in Figure II(a) at 2.65 eV (470 nm). Exploiting that it results from the spectral overlapping of multiple SPs,
we can write [9]

geffPS =

√∑
l∈PS

∑
σ=±1

g2l,σ =

√∑
l=2

g2l,+1, (26)

where we have dropped the vanishing contribution due to odd SPs, and we have excluded the dipole (l = 0) and
quadrupole (l = 1) modes, as they give rise to clearly discernible peaks in J(ω). Equation (26) yields geffPS = 120 meV,
a prediction very similar to the result obtained from the Lorentzian fitting to the pseoudomode, gfitPS = 122 meV. These
two values are in much better agreement with experiments, as the discrepancy with respect to gexp has been reduced
by a factor of 2. This is a remarkable result, given that our theoretical approach omits experimental aspects such as
the impact of inter-band transitions in gold permittivity, the inhomogeneous character of the background dielectric
constant, the presence of surface roughness in the nanocavity boundaries, or the uncertainty in the QE position within
the gap. We believe that our findings do not only prove the predictive value of our TO-inspired theory, but they also
indicate that multipolar SPs (of order higher than dipolar modes) may also have a relevant contribution to the single
molecule plasmon-exciton strong coupling reported in Ref. [10].
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