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Topologically protected entanglement of electron-pair cyclotron motions
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Considering two-dimensional electron gases under a perpendicular magnetic field, we pinpoint a specific
kind of long-range bipartite entanglement of the electronic motions. This entanglement is achieved through the
introduction of bicomplex spinorial eigenfunctions admitting a polar decomposition in terms of a real modulus
and three real phases. Within this bicomplex geometry the cyclotron motions of two electrons are intrinsically
tied, so that the highlighted eigenstates of the kinetic energy operator actually describe the free motion of a
genuine electron pair. Most remarkably, these states embody phase singularities in the four-dimensional (4D)
space, with singular points corresponding to the simultaneous undetermination of the three phases. Because the
entanglement between the two electrons forming a pair, as well as the winding and parity quantum numbers
characterizing the 4D phase singularity, are topological in nature, we expect them to manifest some robustness in
the presence of a smooth disorder potential and an electron-electron interaction potential. The relevance of this
effective approach in terms of 4D vortices of electron pairs is discussed in the context of the fractional quantum
Hall effect.
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I. INTRODUCTION

One of the most important effects of a strong perpendicular
magnetic field on electrons moving in a two-dimensional plane
(2D) is to bend their trajectories into circular cyclotron orbits
as a result of the Lorentz force. A byproduct of this classical
cyclotron motion is the generation of an important energy
degeneracy with respect to the location of the center of the
orbit in the plane. In the quantum realm, the circular motion
implies that the electronic kinetic energy becomes quantized
into discrete and macroscopically degenerate Landau levels
En1 = (n1 + 1/2)�ωc where ωc is the cyclotron pulsation and
n1 a positive integer, as shown by Landau in the early days
of quantum mechanics [1]. This quantization has especially
dramatic consequences for transport properties of electronic
systems in reduced dimensionality, the most famous and
spectacular manifestations being indubitably the integral and
fractional quantum Hall effects [2,3].

To understand microscopically these effects [1], one must
inherently deal with the large degeneracy of the Landau levels,
which is lifted by the potentials due to the impurities and the
interactions between electrons. This physical problem proves
to be highly complex at high magnetic fields owing to its
nonperturbative nature after projection onto a given Landau
level. Concomitantly, the enormous degeneracy of the Landau
levels implies a great freedom in the choice of a basis of
eigenstates of the kinetic energy operator to study the process
of degeneracy lifting. It has been realized during the past few
years [4–8] that for the single electron problem (in which
the interaction between electrons is treated at the mean field
level) one peculiar set of vortex eigenstates turns out to be
well suited to capture the effects of an arbitrary nonuniform
potential energy by virtue of its topological characteristics.
Indeed, within the vortex state basis representation, the
degeneracy quantum number corresponds to the positions in

the plane of 2D phase singularities for the single electron
wave function, while the Landau level index n1 acquires
the meaning of a (positive) circulation around the same
singularities.

The quantized circulation embodies the ability of the defect
to be preserved at high magnetic fields under an arbitrary
continuous potential energy perturbation, whose main effect
is to confer to the vortex a slow motion in an effective
one-body potential landscape. The incompressible nature of
this vortex flow [5] is then responsible for the quantization
of the Hall conductance. At the theoretical level, the phase
space quantization with respect to the position of the phase
singularity (which can be identified in the semiclassical limit as
the orbit guiding center) is achieved through the coherent states
algebra. Consequently, the degeneracy lifting by a nonuniform
potential energy is accounted for in a differential way [7,8],
which allows the incompressible vortex flow to adjust locally.
Because the quantum motion of the vortex is associated with
relatively small energy scales at high magnetic fields, one
can then typically devise semiclassical-type approximations
to describe quantitatively its propagation.

In this paper, we generalize at the two-electron level this
association of the Landau quantization with the existence
of a singular incompressible flow within a hydrodynamical
picture of quantum mechanics [9,10], with the aim to describe
afterwards the degeneracy lifting by an interaction two-body
potential. In this problem, where the number of degrees of
freedom is now doubled, the noninteracting two-electron sys-
tem with the energy quantization (n1 + n2 + 1)�ωc obviously
presents a higher level degeneracy, hinting at an even greater
freedom in the choice of a basis of eigenstates than in the single
electron case. This means again that the Landau quantization
can be interpreted in many different ways, depending on
the chosen decomposition for the global motion of the two
electrons into elementary motions.
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Anticipating a high-magnetic field projection onto two-
electron Landau levels, one may also wonder whether it is
possible to regard the sum n1 + n2 of the individual Landau
level indices as a single quantum number which has the
meaning of a circulation in some peculiar representation of the
quantum eigenstates. Such a speculation immediately entails
searching for entangled eigenstates for which the two electrons
have lost their individuality and cannot be seen as separable
entities. The corresponding eigenstates would then describe
a genuine pair of electrons. The main result of this paper
is to pinpoint such a basis of pair eigenstates describing a
four-dimensional (4D) singular hydrodynamic incompressible
flow. We show that, unlike the single-electron case, the
three remaining degeneracy quantum numbers describing
the pointlike defect in the pair motion space have a mixed
continuous and discrete character. Because of their topological
origin, the discrete degeneracy quantum numbers should
exhibit some robustness at the same time that they are revealed
when switching on an arbitrary two-body interaction. In other
terms, the 4D vortices of electron pairs are expected to form
stable quasiparticles at high magnetic fields provided that their
constitution will be protected by large enough gaps of the
resulting effective two-body interaction.

This paper is organized as follows. In Sec. II, we briefly
review the main properties of the complex vortex basis for
the single electron problem. This section will also serve as an
introduction to the construction method of the bicomplex pair
vortex eigenstates, which bear many similarities to their 2D
analogues. While the underlying bicomplex algebra and the
topological properties of the pair eigenstates are exposed in
Sec. III, the completeness relation obeyed by these states and
the structure of the associated Hilbert space are addressed
in Sec. IV. In Sec. V we eventually discuss a promising
application of the formalism by arguing for the relevance of
considering 4D vortices of electron pairs as building blocks of
an effective theory for the fractional quantum Hall effect. Our
work is summarized in the conclusion (Sec. VI). Finally, some
of the technical details are collected in the Appendices.

II. ONE-BODY VORTEX EIGENSTATES

We first consider a single electron of effective mass m∗
and of charge e = −|e| freely moving in a two-dimensional
plane (x1,y1) under a perpendicular magnetic field B = B ẑ.
The Hamiltonian then simply consists of the kinetic energy
operator

Ĥ0(r1) = 1

2m∗

(
−i�∇r1 + |e|

c
A(r1)

)2

, (1)

where A(r1) is the vector potential, defined up to a gauge factor
by the equation

∇r1 × A(r1) = B. (2)

There exist many different ways to derive the corresponding
well-known quantized Landau energy spectrum, which reads
En1 = (n1 + 1/2)�ωc with the cyclotron pulsation defined
as ωc = |e|B/(m∗c). As a result, this Landau level quan-
tization may be interpreted from diverse viewpoints (as a
consequence of the square integrability condition, of the
quantization of angular momentum, etc.). This is partly

due to the macroscopically large degeneracy of the energy
spectrum providing a great freedom in solving the stationary
Schrödinger’s equation Ĥ0� = E�, which requires defining
a second relevant (degeneracy) quantum number besides the
integer n1.

However, it has been shown [5] that one peculiar set
of electronic eigenstates �n1,R1 (r1) = 〈r1|n1,R1〉 should be
fundamentally preferred [7,8] in so far as it embodies a
hydrodynamic incompressible vortex flow in which the Landau
level quantization follows from a purely topological condition.
This appears as a direct consequence of the presence of a
magnetic field, which unavoidably leads to the existence of a
nontrivial phase ϕ(r1) for the complex wave function �(r1) =
|�(r1)| exp[iϕ(r1)] independently of the chosen gauge for the
vector potential. Within a hydrodynamic picture of quantum
mechanics [9,10], m∗|�(r1)|2 plays the role of a mass density
and the (gauge-independent) quantity

v = �

m∗

(
∇r1ϕ(r1) + 2π

�0
A(r1)

)
(3)

corresponds to a flow velocity (here �0 = hc/|e| indicates
the magnetic flux quantum). One may then envision an in-
compressible flow ∇r1 · v = 0 displaying phase singularities,
i.e., such that ∇r1 × ∇r1ϕ(r1) = 2πn1 δ(r1 − R1)ẑ. We thus
see that both quantum numbers n1 and R1 share somehow a
common origin since they both stem from the production of
the same topological defect.

These vortex wave functions, eigenstates of the (one-body)
kinetic energy Ĥ0(r1), are explicitly given in the symmetrical
gauge A(r1) = B × r1/2 by the expression [5,11]

〈r1|n1,R1〉 = l−1
B√

2πn1!

(
z1 − Z1√

2lB

)n1

e
− |z1 |2+|Z1 |2−2Z1z∗1

4l2
B , (4)

where lB = √
�c/(|e|B) is the magnetic length. Here z1 =

x1 + iy1 is a complex number such that (x1,y1) = r1 defines
the electronic position in the plane. Similarly, R1 = (X1,Y1) is
the vortex position in the 2D plane. Importantly, the complex
coordinate Z1 = X1 + iY1 characterizes the location of the
zeros of the wave function, which definitely correspond to
phase singularities when n1 � 1. Note that the Landau level
index n1 also characterizes the positive circulation around the
vortex, which can be interpreted semiclassically as the chiral
circling motion of the electrons with an axis pointing towards
the field direction. The states (4) should not be confused with
the states usually considered in the context of the fractional
quantum Hall effect for a projection on the lowest Landau level,
which correspond to vortex solutions with negative circulation
and all phase singularities located at the position R1 = 0.
Within the present convention of a magnetic field pointing
in the +ẑ direction, the lowest Landau level wave functions
would indeed exhibit an antiholomorphic character, since they
only depend on the electronic variable z∗

1 = x1 − iy1 (if the
global Gaussian factor e−|z1|2/4l2

B is disregarded). The set of
states (4) spans the lowest Landau level eigenspace instead by
considering an arbitrary position R1 in the plane and fixing the
positive circulation n1 = 0.

In fact, the vortex states (4) obey the coherent states
algebra [12,13] with respect to the (doubly) continuous
quantum number R1. Hence, a distinguishing feature is that
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they present a nonorthogonal overlap

〈n1,R1|n′
1,R

′
1〉 = δn1,n

′
1
〈R1|R′

1〉, (5)

where

〈R1|R′
1〉 = e

− |Z1 |2+|Z′
1 |2−2Z∗

1 Z′
1

4l2
B . (6)

It can be easily shown [5] that they nevertheless form a basis
for the electronic quantum states, spanning the whole Hilbert
space, with the completeness relation∫

d2R1

2πl2
B

+∞∑
n1=0

|n1,R1〉〈n1,R1| = 11. (7)

As it can be directly read from this relation, the degeneracy
of the Landau levels is (2πl2

B)−1 per unit area. In fact, the
nonorthogonality with respect to the quantum number R1 in
Eq. (5) reflects some freedom resulting from the overcom-
plete continuous character of the vortex basis, along with
the quantum uncertainty in the simultaneous determination
of the vortex coordinates X1 and Y1, which form a pair of
conjugate variables for nonzero magnetic field.

Obviously, the vortex positions R1 reduce to the classical
guiding center coordinates in the limit where the magnetic
length lB vanishes. The vortex representation |n1,R1〉 thus
achieves, in a fully quantum mechanical language, the classical
decomposition of the electronic motion into a cyclotronic
rotation plus a guiding-center drift.

Note that the states (4) have already been introduced at
several occasions [14–17] in the context of the quantum Hall
effect, essentially within a second-quantization language by
making explicit reference to the coherent states definition.
Within the hydrodynamic picture of quantum mechanics the
two quantum numbers labeling the vortex eigenstates, the
Landau level index and the guiding-center coordinates, proved
to be not totally unrelated since they are both required to
entirely characterize the topological defect. Thus, the coherent
states character displayed by the vortex position turns out to
be definitely a byproduct.

The fact that the Landau level quantization process can
be associated with the formation of a topological defect is a
very important notion, which confers some rigidity properties
to the vortex state representation. From purely topological
grounds [18], it is clear that the discrete vorticity quantum
number cannot be changed easily. This principle translates into
energetical terms by the presence of a gap (corresponding in
the present case to the Landau gap �ωc) in the energy spectrum,
which must be overcome in order to change the vorticity. This
gap protection vindicates the Landau level projection, which
turns out to be a good (perturbative) approximation to describe
the electronic motion in an arbitrary smooth potential energy
at sufficiently high magnetic fields.

Less obviously, the vortex states representation (4) displays
somehow an additional fundamental form of stability provided
by the continuous character of the defect position R1. Indeed,
the present overcomplete phase space formulation allows one
to represent any state or operator in a diagonal form [19],
and, as a result, explicitly generates within the guiding center
quantum dynamics a hierarchy of local energy scales [7,8]
ordered by powers of the magnetic length and successive

spatial derivatives of the potential energy. For a smooth
potential energy, the vortex states are associated with the
highest energy in this hierarchy and thus appear to be the most
robust states, i.e., the most predictable ones in an experiment.
The energy hierarchy then arranges the relevant superpositions
of the vortex states by their degree of nonlocality. It shows
that the passage from a purely local physics (characteristic of
classical physics) to a highly nonlocal quantum physics for the
(slow) guiding center degree of freedom takes place gradually
when one takes into account the presence of a decreasing
low-energy cutoff into the physical description. This allows
one to devise controlled semiclassical (nonperturbative) ap-
proximation schemes valid at finite temperatures for physical
observables such as the thermal local density of states [7,8].
Hence, the global quantum mechanical motion of the electron
in a high magnetic field and in the presence of a smooth
potential energy can be effectively viewed as a moving vortex.

The possibility to write down an effective equation of
motion for the vortex is based on the holomorphic character
of the states (4) with respect to the vortex positions. Indeed,
the projection of the electron dynamics onto a given Landau
level (not necessarily the lowest one) relies on the property that
the states (4) are analytical in the complex variable Z1 for any
Landau level (if we disregard the global Gaussian factor). Note
that this property of analyticity, which is independent of the
Landau level index, does not hold for the electronic variables
r1, since the wave functions generically depend both on the
variables z1 and z∗

1 (again once the Gaussian factor is removed).
Because all Landau levels are treated on an equal footing,
the vortex representation appears very convenient [7,8] at the
technical level to perform the Landau level projection.

The pioneer works [14–17] made use of the states (4) to
study the lowest Landau level physics within a path-integral
formalism, which seemed to suffer from technical difficulties
that were not elucidated. In contrast, a formulation in terms
of phase-space Green’s functions [6–8] is not tainted with
the peculiar mathematical ambiguities often encountered with
the path-integral technique. In the study of central interaction
potentials, it seems appealing within the zero Landau level to
introduce vortex eigenstates with negative circulations instead
of coherent states. However, this alternative for n1 = 0 would
mean giving up the continuous guiding center degree of
freedom, which is albeit physically relevant at high magnetic
fields. We show in the following that there is more room
at the two-electron level by building up vortexlike defects
also within the lowest Landau level, which still exhibit some
continuous character essential to describe nonperturbatively
the physical effect of a smooth disordered potential on the
electronic motion.

III. PAIR VORTEX EIGENSTATES

Let us consider now the two-electron kinetic energy
operator consisting of the sum of the single-electron free
Hamiltonians

Ĥ 2e
0 (r) = Ĥ0(r1) + Ĥ0(r2). (8)

Here r1 = (x1,y1) and r2 = (x2,y2) refer to the positions of the
two electrons in the plane, while r = (r1,r2) forms the four-
dimensional (4D) collection of these positions. Obviously,
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the corresponding two-electron energy levels take the form
En1 + En2 = (n1 + n2 + 1)�ωc, where n1 and n2 designate the
individual Landau level indices.

We are interested in solutions � of the Schrödinger’s
equation Ĥ 2e

0 (r)�(r) = E �(r) which describe vortexlike
defects. The product states �n1,R1 (r1)�n2,R2 (r2) built from
the one-electron vortex wave functions of each electron and
introduced in the previous section are obviously eigenstates of
Ĥ 2e

0 (r), but they embody two independent 2D vortices located
at r1 = R1 and r2 = R2 with positive circulations n1 and n2.
We are rather looking instead for eigenstates which can be
viewed as 4D topological defects of the motion space for the
two electrons, with the main goal of representing the integer
n1 + n2 as a single quantum number. We can guess that for
this purpose the cyclotron motions of the two electrons have
necessarily to be correlated with the achievement of a kind of
closed trajectories in the 4D space. This also means that the
sought eigenstates intrinsically describe the free motion of a
pair of electrons rather than the motion of two (independent)
free electrons.

In the definition of the 2D complex vortex wave functions,
the mathematical concepts of differentiability and analyticity
play a major role. These important properties can be integrated
in a 4D framework only if the space of solutions to the
Schrödinger’s equation is extended to allow bicomplex-valued
wave functions. Before presenting these 4D vortex solutions,
we need to make a short presentation of the bicomplex
algebra [20], which is studied in detail, for instance, in a
recent book by Catoni et al. [21]. A bicomplex number q

can be originally viewed as a commutative extension of the
complex numbers z to the 4D space. It may be expressed as

q = z1 + jz2 = x1 + iy1 + j (x2 + iy2), (9)

where j is a hyperbolic unit, i.e., j 2 = 1. Here i is the
usual imaginary unit (i2 = −1) and commutes with j , hence
we have (ij )2 = (ji)2 = −1. Somehow, the number q can
be seen as consisting of two copies of the complex plane
correlated in a “hyperbolic way.” In contrast to the usual
Euclidean quaternions (which correspond to a different,
noncommutative, algebra onR4), the bicomplex numbers form
a commutative algebra, so that differentiability and analyticity
can be well defined [20,21] in the 4D realm, in close analogy
with the (planar) complex analysis.

The bicomplex algebra exhibits yet specific features in
comparison with the complex algebra. Indeed, because of
the presence of three versors, there exist [21] three principal
conjugations of q denoted by

q∗i = z∗
1 + jz∗

2, (10)

q∗j = z1 − jz2, (11)

q∗ij = z∗
1 − jz∗

2. (12)

It is worth stressing that the bicomplex numbers generate
then a non-Euclidian geometry (this could be already guessed
from the presence of the hyperbolic unit related to space-time
geometry). In particular, the modulus, which is an invariant
quantity of the geometry, necessarily [21] reads ‖q‖ =

4
√

qq∗iq∗j q∗ij = √|z1 − z2||z1 + z2|. More interestingly, the

geometry of the bicomplex space can be better grasped in
a polar representation, where its peculiar topology becomes
more explicit:

q = ‖q‖ exp(iθi + jθj + ijθij ) (13)

with the three real angles (or phases)

θi = 1

2

[
arctan

y1 + y2

x1 + x2
+ arctan

y1 − y2

x1 − x2

]
, (14)

θij = 1

2

[
arctan

y1 + y2

x1 + x2
− arctan

y1 − y2

x1 − x2

]
, (15)

θj = 1

2
ln

∣∣∣∣z1 + z2

z1 − z2

∣∣∣∣. (16)

This conformal mapping from the cartesian coordinates to
the polar coordinates clearly highlights singular regions of
the 4D space where the modulus vanishes and at least one
of the three angles become undefined. These (forbidden)
regions corresponding to the planes of equations z1 ± z2 = 0
concentrate all zero divisors [22] of the bicomplex algebra and
can be regarded as forming a null cone. Therefore, the modulus
‖q‖ is a measure of nothing else but the distance to the null
cone. Note that two angles θi and θij are circular as a result of
their coupling to the imaginary unit i, whereas the third angle
θj is, in contrast, hyperbolic.

From a practical perspective, it appears very convenient to
introduce the idempotent elements e± = (1 ± j )/2, obeying
the relations e2

± = e±, e+e− = 0 and e+ + e− = 1. Any bi-
complex number can then be alternatively decomposed [20,21]
along the elements e±, which can be seen as orthogonal
axis planes, as q = (z1 + z2)e+ + (z1 − z2)e−. Within this
idempotent projection into a pair of complex numbers, the
invertible bicomplex numbers (which can be alternatively
decomposed in the polar representation) are all characterized
by two nonzero components, i.e., by nonzero modulus ‖q‖,
since the singular regions precisely coincide with these axis
planes defined by e±. Note that the origin, which is the only
point shared by the two planes, turns out to be the most singular
point since it corresponds to the unique place in the 4D space
where the three angles appearing in the polar representation
(13) get simultaneously undefined (see Fig. 1 for a schematic
illustration of the corresponding topological defect).

Being better familiar with the bicomplex algebra, we now
come back to our physical problem. We first rewrite the kinetic
Hamiltonian (8) in terms of the bicomplex variable q and its
conjugations:

Ĥ 2e
0 (r) = Ĥ (q,q∗i) + [Ĥ (q,q∗i)]∗j , (17)

where

Ĥ (q,q∗i) = �ωc

2

[
−8l2

B∂q∂q∗i + q∂q − q∗i∂q∗i + qq∗i

8l2
B

]
.

(18)

Then, it can be straightforwardly checked that the following
bicomplex-valued wave functions

〈r|n,m,λ,R〉 = 1√
2

(
�n,m,R(r)

λ�
∗j

n,m,R(r)

)
(19)
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FIG. 1. Schematic illustration of a 4D vortex according to the
polar decomposition (13). The orthogonal axes which represent
the axis planes (defined by the idempotent elements e±) determine
the location of the points of the 4D space where ‖q‖ = 0. As for the
product of two independent 2D vortices, these regions (of dimension
2) concentrate all the phase singularities. The distinguishing feature
of the 4D vortex lies in the existence of a most singular point
(corresponding to the intersection of the axis planes) where the
hyperbolic phase θj characterizing the correlations between the two
complex planes becomes additionally indeterminate. The hyperbola
set by the consideration of a fixed nonzero ‖q‖ illustrates the
non-Euclidian nature of the bicomplex geometry.

with

�n,m,R(r) =
(
2πl2

B

)−1

√
n! m!

(
q − Q

2lB

)n(
q∗ij − Q∗ij

2lB

)m

× e
− |z1 |2+|Z1 |2−2Z1z∗1

4l2
B e

− |z2 |2+|Z2 |2−2Z2z∗2
4l2

B , (20)

are eigenstates of the two-electron kinetic energy operator
Ĥ 2e

0 (r) in the symmetrical gauge, with the energy quantization
En = (n + 1)�ωc. Here n and m are positive integers and
λ = ±1 is a band index. Analogously to the definition of
q, the bicomplex number Q reads in terms of the complex
components Z1 = X1 + iY1 and Z2 = X2 + iY2 as Q = Z1 +
jZ2. The quantum numbers R = (R1,R2) characterize the
arbitrary position of the origin of the bicomplex frame in
the 4D space. Therefore, as in the case of the 2D complex
vortex states, these quantum numbers are somehow defined
from a translation operation (yet here in a non-Euclidian
geometry), which is a common way to generate the coherent
states character. The spinorial structure of the states (19) is
required in order to give a satisfactory interpretation of the
square modulus as a probability density, see the discussion in
the next section. It also naturally results from the symmetry of
the kinetic energy operator (17) with respect to the hyperbolic
conjugation (operation ∗j ), which produces an additional
twofold degeneracy (represented by the quantum number λ)
for the pair Landau levels when (n,m) 	= (0,0).

One should be aware that the polar decomposition (13),
which is the best representation of the bicomplex geometry,
is always implicitly assumed: When (n,m) 	= (0,0), the func-
tions (19) not only vanish for r = R as one may naively guess
at first sight, but also for electronic positions r lying in the
whole null cone, i.e., here when (z1 − Z1) + (z2 − Z2) = 0 or
when (z1 − Z1) − (z2 − Z2) = 0. The fact that these regions

of singularities for the phases of the wave function are of
codimension 2 is naturally expected for vortexlike defects
in the 4D space (this was for example already the case
when considering the product states of two independent 2D
vortices). It is important to notice that the polynomial part
of the states (19) actually represents a kind of gravitationlike
distortion which structures the whole 4D space. It describes
bicomplex harmonic functions consisting of four real compo-
nents of four variables, which are very tightly linked [each of
the four real components defined in the basis (1,i,j,ij ) obeys
a 4D Laplace’s equation].

The two non-negative integers n and m, which stem from
the presence of two circular angles in the bicomplex geometry,
are nothing but the winding numbers for the pair motion of
electrons enclosing the singular axis planes. An illustration
of the genuinely 4D nature of this quantum pair cyclotron
motion, which cannot be reduced to two independent 2D
electronic orbital motions for topological grounds, is that only
the winding number n now contributes to the quantization of
the two-electron kinetic energy. The other winding number m,
which always appears in association with the usual conjugation
∗i of complex numbers, plays the role of a negative circulation,
hinting at a semiclassical orbital motion of the correlated
electrons with an axis of rotation pointing in the opposite
direction to the applied magnetic field.

Although the 2D vortex states (4) and their 4D counter-
parts (19) look quite similar, the major difference between
them can be inherently found in the different space topologies
that they embed. In both cases, the nontrivial topologies of
the complex and bicomplex algebras give rise to quantum
eigenstates containing long range structures and characterized
by robust quantum numbers (i.e., topological attributes). The
bicomplex representation of the eigenstates of the two-electron
kinetic energy operator has the additional peculiarity of also re-
laying some long-range structure to the electronic pair correla-
tions, given that the electronic coordinates r1 and r2 are intrin-
sically intertwined. As in the one-electron case, the robustness
of the 4D vortex states can only be established within the full
process of Landau level degeneracy lifting. At the two-electron
level, the electron-electron interaction sets an intermediate
energy scale into the high magnetic field problem, which is
expected to give rise to some gap protection for the discrete pair
degeneracy quantum numbers. Additionally, the smooth con-
tributions to the potential energy vindicate the use of a semi-
classical treatment for the description of the slow components
of the electron pair motion, similarly to the single electron case.

Finally, it should be noted that within the bicomplex algebra
one literally realizes a complete fusion of the individual
electronic cyclotron motions via a novel kind of topological
entanglement, which is formally allowed from the viewpoint
of the Schrödinger’s equation alone. The main issue, which
will be only partially settled in the remainder of this paper, is
whether this bicomplex representation of the electronic states
conforms to some physical reality at high magnetic fields.

IV. COMPLETENESS RELATION AND HILBERT SPACE
OF PAIR VORTEX STATES

In this section, we aim at arguing and proving that the
set of 4D vortex eigenstates |n,m,λ,R〉 forms a reliable
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CHAMPEL, HERNANGÓMEZ-PÉREZ, AND FLORENS PHYSICAL REVIEW B 93, 075112 (2016)

representation of the electronic quantum states. An obvious
concern is that going beyond complex numbers may cause
problems in the physical interpretation [24]. In order to
preserve the standard structure of quantum mechanics, it
turns out important to keep the inner product between two
arbitrary states |�1〉 and |�2〉 of the space of squared integrable
functions, which is defined only in terms of the conjugation ∗i

(with respect to the imaginary unit i of complex numbers) as

〈�1|�2〉 =
∫

d4r �∗i
1 (r)�2(r), (21)

where we have used the standard bra-ket notation. When
considering eigenfunctions (19), the product (21) is now
defined in a bicomplex functional space with the target space
being the bicomplex numbers space. Most importantly, it
still constitutes a scalar quantity which is invariant under all
possible rotational transformations of the coordinate system.
Indeed, when inserting expressions (19) into (21), we generi-
cally deal with the spatial integration of the bicomplex quantity
q1q

∗i
2 q

∗j

3 q
∗ij

4 (with q1, q2, q3, and q4 representing four different
bicomplex numbers), which constitutes an invariant form of
degree 4 for the bicomplex metric.

It can be easily checked that the states |n,m,λ,R〉 are
normalized according to the standard definition (21) for the
inner product. As for 2D complex vortex states, two different
pair vortex eigenstates are expected to have a nonorthogonal
overlap by virtue of their coherent-state character. After
calculations (see Appendix A), we get the result

〈n,m,λ,R|n′,m′,λ′,R′〉 = δn,n′ 〈R1|R′
1〉 〈R2|R′

2〉

× 1

2

[
γm;m′ (R′ − R) + λλ′γ ∗j

m;m′(R′ − R)
]
, (22)

with

γm;m′ (R) =
∑
p,p′

δp,p′

(
m

p

)(
m′
p′

)√
p! p′!
m! m′!

×
(

Q∗j

2lB

)m−p(
−Q∗ij

2lB

)m′−p′

. (23)

In addition to the typical Gaussian overlap of coherent states,
the overlap function (22) displays a polynomial bicomplex
dependence on R′ − R via the quantity γm;m′ (R′ − R). As a
result, it is not only nonorthogonal with respect to the quantum
numbers R, but also with respect to the other degeneracy
quantum numbers m and λ. Interestingly, if we now consider
coinciding vortex positions R = R′, the overlap (22) then
becomes entirely diagonal with respect to the discrete quantum
numbers

〈n,m,λ,R|n′,m′,λ′,R〉 = δn,n′ δm,m′ δλ,λ′ . (24)

This relation brings back some symmetry between the positive
circulation quantum number n and the negative circulation
quantum number m, which was apparent at the level of the
wave functions (19). However, because of its original intricate
coupling with the vortex position R [see Eq. (22)], it is expected
that m plays a strikingly different role from the Landau level
index n in the effective dynamics of the 4D vortex.

As it could be anticipated from their definition in terms
of harmonic modes of the 4D bicomplex geometry, the

set of states |n,m,R,λ〉 obeys a closure relation (see proof
in Appendix B), with a form relatively similar to that of
relation (7):∫

d4R(
2πl2

B

)2

∑
n,m,λ

f (m) |n,m,λ,R〉〈n,m,λ,R| = 112, (25)

where 112 = 11 ⊗ 11λ. This identity reveals some flexibility of
the representation (in addition to that already provided by the
doubly continuous character of R), since the weight function
f (m) in Eq. (25) is not yet entirely determined and obeys the
sole constraint

+∞∑
m=0

f (m) = 1. (26)

The simplest choice is to set the quantum number m to a fixed
value so that it is not required to sum over all positive integers
m in Eq. (25). The integer m somehow acquires the status of
a good “extra” quantum number since then only the diagonal
matrix elements (22) with m = m′ become necessary in the
quantum representation. In this case, the algebra with respect
to the vortex positions R becomes pretty analogous to that of
the so-called generalized coherent states [23].

The resolution of unity (25) considered for a fixed given
m shows that the collection of vortex states (19) spans a
Hilbert space, whose any state can be expressed as the linear
combination

|�〉 =
∫

d4R(
2πl2

B

)2

∑
n,λ

e
− R2

1+R2
2

4l2
B

(
cn,m(R) |n,m,R〉

λc
∗j
n,m(R) |n,m,R〉∗j

)
, (27)

with coefficients taking the following form cn,m(R) =
(2l2

B∂Q∗ij − Q∗j )m cn,m(Q∗ij ) where cn,m(Q∗ij ) are analytical
functions of the variables Q∗ij . Note that the norm of any
state belonging to this Hilbert space with respect to the inner
product (21) is real and positive, since from Eqs. (22) and (27)
we get after straightforward calculations

〈�|�〉 =
∫

d4R(
2πl2

B

)2

∑
n

2 exp

[
−R2

1 + R2
2

2l2
B

]

× [
cn,m(R)c∗i

n,m(R) + c∗j
n,m(R)c∗ij

n,m(R)
]
. (28)

Therefore, the modulus squared of the probability amplitude
can still be physically viewed as representing the electronic
probability density.

Finally, let us consider the general form of the matrix
elements of the potential energy V (r) in the pair vortex repre-
sentation. Here V (r) ≡ V (r1,r2) incorporates the interactions
between electrons and the potentials due to impurities and
electrostatic confinement seen by the two electrons forming
the pair. It thus generically depends on both two-dimensional
electronic coordinates r1 and r2. As a result of the spinorial
form of the wave functions (19), it is straightforward to see
that these matrix elements can be generally written as

〈n,m,λ,R|V̂ |n′,m′,λ′,R′〉
= 1

2 [〈n,m,R|V̂ |n′,m′,R′〉 + λλ′(〈n,m,R|V̂ |n′,m′,R′〉)∗j ].

(29)
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Obviously, the purely hyperbolic terms, proportional to the
unit j , correspond to off-diagonal contributions in the 2 × 2 λ

basis, while diagonal blocks (for λ = λ′) are complex numbers.
This construction guarantees the real character of the energy
spectrum, since the Hamiltonian operator is then represented
by an Hermitian matrix with respect to both the usual
conjugation and the hyperbolic conjugation. From simple cal-
culations (see Appendix A), it can be shown that the quantity
〈n,m,R|V̂ |n′,m′,R′〉 in Eq. (29) takes the generic form

〈n,m,R|V̂ |n′,m′,R′〉

= 〈R1|R′
1〉 〈R2|R′

2〉
∑
p,p′

√
p! p′!
m! m′!

×
(

m

p

)(
m′
p′

)
(δQ∗j )m−p(−δQ∗ij )m

′−p′
vn,p;n′,p′ (R̃),

(30)

where δQ = (Q′ − Q)/(2lB) and R̃ = (R̃1,R̃2) is
defined through an analytical continuation of the vortex
position R = (R1,R2) to the complex planes, such
that R̃s = [Rs + R′

s + i(R′
s − Rs) × ẑ]/2 for s = 1,2.

Importantly, we recover within expression (30) a generic
property [19] of the coherent-state representation, namely, that
any operator or state are uniquely determined by their diagonal
matrix elements. Indeed, the entire information contained in
the potential matrix elements can be actually found when con-
sidering the latter at coinciding vortex positions R = R′, within
its reduced matrix elements vn,p;n′,p′ (R), which explicitly read

vn,p;n′,p′ (R) = 1√
n! n′! p! p′!

∫
d4r
π2/4

e−2r2
V (R + 2lBr)

× (q)n
′
(q∗i)n(q∗j )p(q∗ij )p

′
. (31)

For a constant potential V̂ = 11, we immediately find again the
above expression (22) for the overlap between two arbitrary
pair vortex states, since then vn,p;n′,p′ (R) = δn,n′ δp,p′ .
Equations (29) and (31) constitute the basic elements of an
effective potential seen by the pair vortex which will appear
in the equation of motion. Because it involves nontrivial
technical developments beyond the scope of the present paper,
the mathematical derivation of an equation of motion for the
pair vortex in the presence of both a disorder potential and
electron-electron interactions is postponed to future work. In
the next section, we shall, however, anticipate the effects of
the latter in a purely qualitative way.

V. PERSPECTIVES FOR THE FRACTIONAL QUANTUM
HALL EFFECT

So far, we have only discussed the peculiar form and prop-
erties of a subset of quantum states for two noninteracting (yet
correlated) electrons in an external perpendicular magnetic
field. We now analyze at a qualitative level the degeneracy lift-
ing process of the pair Landau level by both one-body and two-
body interaction potentials at the light of the vortex represen-
tation of the states previously developed. Obviously, the quest
of good quantum numbers at the quantum mechanical level
underlies in a way the choice of the most relevant decomposi-
tion of the global motion of the electron pair into elementary

motions. This relevance manifests through the presence
of a hierarchy of energy scales (or time scales) for these
elementary motions, which will be exploited in order to carry
out a separation between the fast and slow degrees of freedom.

Clearly, the cyclotron motions of the electrons associated
with the Landau level quantum number set the highest energy
scale of this hierarchy at high magnetic fields. For two inde-
pendent electrons in circular motion one naturally expects the
presence of two integral quantum numbers. However, we have
seen that the Schrödinger’s equation also allows, in principle,
bicomplex wave solutions describing correlated cyclotron
motions and contributing to the kinetic energy quantization
with a single pair Landau level index. The byproduct of this fast
correlated rotation is that the second integral quantum number
characterizing a counterpropagating orbital pair motion is then
relegated to the kinetic energy degeneracy.

This integral degeneracy, as well as the degeneracy with
respect to the relative guiding center R1 − R2, gets intrinsically
lifted by the interactions between the two electrons forming
the pair which provide a subleading energy scale, since at high
magnetic fields the effective Coulomb interaction (integrated
over the cyclotron orbit) scales with the square root of the
magnetic field. Classically, the central interaction potential
imparts at high magnetic fields a relatively fast rotational
motion of the guiding centers R1 and R2 around each other.
In the quantum case, this periodic motion gives rise to
bound states [25], which are best characterized by another
discrete good quantum number (a quantized relative angular
momentum) in place of the quantity R1 − R2. Thus, our 4D
vortex approach suggests the existence of gaps for the pair
energies which are labeled by the collection of two different
integral quantum numbers (a dependence of the gaps on the
band quantum number λ = ±1 is also expected) in addition
to the Landau level index. Finally, the lowest energy scale is
associated with the motion of the center of mass of the two
guiding centers R1 and R2, which is induced by the smooth part
of the pair potential energy due to impurities and electrostatic
confinement. This slow motion can be well captured at finite
temperatures by semiclassical approximations which would
lead to a smooth dispersion of the effective pair energy with
respect to the center of mass (R1 + R2)/2.

In many situations the consideration of the two-electron
problem turns out to be very instructive [26] in order to grasp
crucial parts of the physics of the many-electron system or
at least to develop a feel for it. For instance, the celebrated
Laughlin’s wave functions [27], which successfully describe
the sequence of some peculiar fractions of the fractional
quantum Hall effect, can be understood [26] as a generalization
of the two-particle states, especially highlighting pairwise
correlations between the electrons. The fact that a pair of
electrons in the presence of a repulsive interaction potential has
a discrete spectrum is a central feature underlying the existence
of excitation gaps in the many-electron problem. This result
mostly stems from the severe restrictions imposed by the
magnetic field on the quantum states after projection on the
lowest Landau level. This projection usually amounts to get rid
of the electronic cyclotron motion degrees of freedom, so that
the correlations essentially take place through the interactions
between the guiding center degrees of freedom. One key point
considered in this paper, which is discarded in the usual
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treatment of the two-electron problem, is to introduce into
the description pair correlations between the two electronic
cyclotron motions already at the level of the Landau level quan-
tization process, i.e., before freezing the kinetic energy. As a
result, the lowest Landau level projection for the two-electron
problem amounts to get rid of only one degree of freedom
instead of two when restricting solutions of the Schrödinger’s
equation to analytical complex-valued wave functions.

It is then very tempting to relate the different fractions
observed in the fractional quantum Hall effect, which are
characterized by at least two independent integers, to the
presence of two good discrete quantum numbers for the
pair motion, namely, the relative guiding center angular
momentum and the discrete negative circulation released
through the generation of cyclotron quantum correlations.
Indeed, Jain’s sequence of fractions [28–30] showing the most
pronounced features in the transport properties also involves
two independent integers. The interpretation of the quantum
states is usually grasped by means of the concept of weakly
interacting composite fermions (presented as electrons bound
to an even number of flux quanta) moving in a reduced
magnetic field [29]. Theoretically, the corresponding ground
states are derived [30] as a generalization of the Laughlin’s
trial wave functions by involving the contributions of higher
Landau levels before projecting again on the lowest Landau
level, a construction which appears rather bizarre from the
physical point of view at high magnetic fields. It is worth noting
that, within the pair vortex representation of the quantum
states, the negative circulation is expected to manifest as an
effective kinetic energy, since it is originally associated with
the electronic orbital motion. In some sense, it thus causes
similar effects to those originating from the composite fermion
phenomenological construction. One may easily envision that
the quantum counter-rotation of the electrons embodied by the
negative circulation quantum number amounts to a screening
of the original magnetic field. In contrast to the one-body case,
the pair vortex thus sees an effective magnetic field in addition
to an effective potential energy, as a result of the integration
over the fast (frozen) orbital degrees of freedom.

The fruitful understanding of the fractional quantum Hall
effect as an integral quantum Hall effect of weakly interacting
composite particles which has been obtained during the
past decades [30] definitely calls for a unifying microscopic
principle. For the sake of consistency, this common physical
guideline should be found again at the core of the theoretical
microscopic treatments of both the integral and fractional
quantum Hall effects. At the beginning of this paper we
have insisted on the existence of vortexlike solutions to the
Schrödinger’s equation at the level of the one-body kinetic
energy operator (1) in a magnetic field. Therefore, the (integer)
Landau gap responsible for the integer quantum Hall effect can
be fundamentally understood as the signature of a topological
defect. Then, we have shown that the two-electron kinetic
energy operator also embeds peculiar solutions representing
the free pair motion as a 4D vortex, again linking the Landau
level index with a quantized positive circulation. Similar to
the one-electron case, the creation of this topological object
provides a microscopic mechanism that sustains the presence
of energy gaps in the collective electronic modes at high
magnetic fields.

A direct objective for future work is the derivation of the
interaction energy gaps for the electron pair vortices, which
should reveal specific dependencies on the magnetic field and
on the discrete pair quantum numbers that could be compared
with experiments. An important step towards the construction
of a microscopic theory for the fractional quantum Hall effect
will be to specify the connection between the many-electron
problem and an effective problem formulated in terms of 4D
vortices of electron pairs. It will also remain to clarify the role
of quantum statistics and the fundamental mechanism respon-
sible for the fractionalization of the Hall conductance in the
effective problem. Finally, Green’s function techniques such
as those being already developed [6–8] for the integer quantum
Hall regime should also provide microscopic derivations of the
transport coefficients in the strongly correlated regime within
a semiclassical framework exploiting the slow character of the
center of mass pair vortex motion.

VI. CONCLUSION

In summary, we have highlighted the existence of singular
microscopic quantum solutions for the cyclotronic motion of
electrons, which provide a topological and hydrodynamic view
in order to capture the effects on these states induced by the
presence of arbitrary smooth disorder and interactions between
electrons. To that purpose, we have principally generalized
in this paper this vortex approach to the two-body problem
by pinpointing a peculiar subset of pair vortex coherent
states which embody a topologically-protected entanglement
of the two electronic orbital motions. The corresponding
correlations between the two electrons are then intrinsically
long-range and built in through the non-Euclidean geometry
of the bicomplex numbers, which generalize to the 4D space
the concept of complex numbers. We have also put forward
that the introduction of the bicomplex algebra does not fun-
damentally alter the standard formulation and interpretation
of quantum mechanics, in so far as the usual scalar product
functional form is kept invariant. Importantly, we have shown
that the set of pair vortex eigenstates can be used as a
reliable representation of the electronic states, since it forms an
overcomplete basis of an enlarged Hilbert space. Finally, we
have addressed qualitatively the problem of the degeneracy
lifting process of the pair Landau levels by both strong
electron-electron interactions and smooth disorder, and have
argued that the pair vortex motion in the lowest Landau level
is expected to be characterized by energy gaps labeled by two
good discrete (independent) quantum numbers.
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APPENDIX A: OVERLAP AND POTENTIAL
MATRIX ELEMENTS

In this Appendix, we detail the derivation of the general
expression (30) from Eq. (29). By definition, the matrix
elements of the potential energy V (r) read, in terms of the
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pair vortex wave functions,

〈n,m,R|V̂ |n′,m′,R′〉 =
∫

d4r �∗i
n,m,R(r)V (r)�n′,m′,R′ (r).

(A1)

We first introduce the new integration variables r̃ = (r −
R̃)/2lB with R̃ = (R̃1,R̃2) and R̃s = [Rs + R′

s + i(R′
s −

Rs) × ẑ]/2 for s = 1,2, what amounts to shift the four Carte-
sian coordinates (x1,y1,x2,y2) composing the 4D vector r by
constant complex quantities. Note that the four corresponding
contours are deformed to the real axes thanks to the analyticity
of the integrated functions. After this shift, the overlap then
reads

〈n,m,R|V̂ |n′,m′,R′〉

= 〈R1|R′
1〉 〈R2|R′

2〉
∫

d4r̃
π2/4

e−2r̃2
(q̃)n

′
(q̃∗i)n(q̃∗j + δQ∗j )m

× (q̃∗ij − δQ∗ij )m
′
V (R̃ + 2lB r̃), (A2)

where δQ = (Q′ − Q)/2lB . Expanding the two polynomial
parts shifted by the quantity δQ by using the binomial
formula, we straightforwardly get the result written in Eqs. (30)
and (31). In general, it turns out convenient not to specify
explicitly the boundaries of the discrete sums, which can
be accounted for in the binomial coefficients by using their
extended definition (

m

p

)
= 0, (A3)

when either p > m or p < 0.

APPENDIX B: PROOF OF COMPLETENESS RELATION

In this Appendix, we provide a proof of the closure
relation (25). We first consider the quantity

I =
∑
n,λ

∫
d4R(

2πl2
B

)2 〈n′,m′,λ′,R′|n,m,λ,R〉

× 〈n,m,λ,R|n′′,m′′,λ′′,R′′〉 (B1)

defined for arbitrary bra 〈n′,m′,λ′,R′| and ket |n′′,m′′,λ′′,R′′〉
states. Using expressions (22) and (23), then shifting in the
complex plane the variable of integration R in order to center
the Gaussian exponential factors as done in Appendix A, we
get after summation over the discrete sums,

I = 1
2 [G∗j (R′′ − R′) + λ′λ′′G(R′′ − R′)]

×〈R′
1|R′′

1〉〈R′
2|R′′

2〉, (B2)

where

G(R′) =
∑
p1,p2

(
m′
p1

)(
m

p1

)(
m

p2

)(
m′′
p2

)
p1!p2!

m!
√

m′!m′′!

×
∫

d4r
π2/4

e−2r2

(
q + Q′

2lB

)m′−p1

(−q∗i)m−p1

× (−q)m−p2

(
q∗i − Q′∗i

2lB

)m′′−p2

. (B3)

Using twice the binomial formula such that(
q + Q′

2lB

)m′−p1

=
∑

p

(
m′ − p1

m′ − p

)
(q)p−p1

(
Q′

2lB

)m′−p

,

(
q∗i − Q′∗i

2lB

)m′′−p2

=
∑
p′

(
m′′ − p2

m′′ − p′

)
(q∗i)p

′−p2

×
(

−Q′∗i

2lB

)m′′−p′

,

and the identity∫
d4r
π2/4

e−2r2
qn′

(q∗i)n(q∗j )m(q∗ij )m
′ = n!m!δn,n′δm,m′ ,

which can be easily established by different means within the
bicomplex algebra, we obtain

G(R′) =
∑
p,p′

δp,p′

(
m′
p

)(
m′′
p′

)√
p! p′!

m′! m′′!

×
(

Q′

2lB

)m′−p(
−Q′∗i

2lB

)m′′−p′

gp,m, (B4)

where we have used(
m′
p1

)(
m′ − p1

m′ − p

)
=

(
m′
p

)(
p

p1

)
, (B5)

(
m′′
p2

)(
m′′ − p2

m′′ − p′

)
=

(
m′′
p′

)(
p′
p2

)
. (B6)

We can note from Eqs. (B2) and (B4) that the quantity I
takes at this point almost the form of the overlap (22) between
two pair vortex states up to the coefficient gp,m which is given
by

gp,m =
∑
p1,p2

(−1)p1+p2
p1! p2!

p! m!

(
m

p1

)(
m

p2

)(
p

p1

)(
p

p2

)

× (m + p − p1 − p2)!. (B7)

Actually, this coefficient g turns out be equal to unity
irrespective of the integers p and m. This comes out rather
straightforwardly from the following identity [31]∑

p

(−1)p
(

m

p

)
P (x + m − p) = m! am, (B8)

which holds for any polynomial P (x) of degree less than or
equal to m (here am is the coefficient of degree m of P ). In
particular, if the polynomial P is of degree strictly less than
m, this means that the result of summation in (B8) amounts
to zero, since then am = 0. The above identity can be easily
understood by recognizing the forward difference operator Dx

applied m times to the polynomial P (x). This linear operator in
the space of polynomials reduces the degree of any polynomial
function by one, and it is therefore understood as a discrete
version of the derivative representing quasilocality. Indeed, we
have DxP (x) = P (x + 1) − P (x), and

(Dx)mP (x) =
∑

p

(−1)p
(

m

p

)
P (x + m − p). (B9)
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The different factorials appearing in Eq. (B7) can be gathered
together and seen as a polynomial of some given variable
x, in such a way that the sum over one of the two integers
p1 or p2 can be first performed by use of identity (B8). As
a consequence, only one term of the second sum remains
nonzero from the polynomial degree constraint and yields the
result gp,m = 1.

Finally, in order to get the completeness relation (25), one
should consider the summation of the quantity I [defined in

Eq. (B1)] over all possible values for the quantum number
m. Because of the independence of the coefficient gp,m with
respect to m, the introduction of an arbitrary weight function
f (m) satisfying constraint (26) is required to ensure the
convergence of the sum over the integers m. This property
illustrates somehow a redundancy character of the negative
circulation quantum number, which is yet required to describe
all possible phase singularities of the bicomplex geometry
involving two circular angles.
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