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We theoretically investigate the spectral properties and the spatial dependence of the local density of states
(LDOS) in disordered two-dimensional electron gases (2DEG) in the quantum Hall regime, taking into account the
combined presence of electrostatic disorder, random Rashba spin-orbit interaction, and finite Zeeman coupling.
To this purpose, we extend a coherent-state Green’s function formalism previously proposed for spinless 2DEG
in the presence of smooth arbitrary disorder, that here incorporates the nontrivial coupling between the orbital
and spin degrees of freedom into the electronic drift states. The formalism allows us to obtain analytical and
controlled nonperturbative expressions of the energy spectrum in arbitrary locally flat disorder potentials with
both random electric fields and Rashba coupling. As an illustration of this theory, we derive analytical microscopic
expressions for the LDOS in different temperature regimes which can be used as a starting point to interpret
scanning tunneling spectroscopy data at high magnetic fields. In this context, we study the spatial dependence and
linewidth of the LDOS peaks and explain an experimentally noticed correlation between the spatial dispersion
of the spin-orbit splitting and the local extrema of the potential landscape.
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I. INTRODUCTION

A. Motivation

The study of spin-orbit (SO) induced phenomena in
semiconductor heterostructures has evolved during the last two
decades into a rich research subfield of spintronics both due to
the interesting fundamental physics involved1 and the potential
applications, which span from information processing devices
to quantum computation.2 One of the most important goals in
this area consists in the local injection, transfer, manipulation,
and detection of spin in a controllable and coherent way, and
it has been recognized that the SO coupling is a particularly
well-adapted tool. Moreover, one expects to be able to control
the spin degree of freedom using electric fields created by local
voltage gates since the charge and spin degrees of freedom
become coupled. The situation could allow an implementation
of some spintronic devices in disordered two-dimensional
electron gases (2DEG) based in the spin-field effect transistor3

or its counterpart in the quantum Hall regime4,5 where one
takes advantage of the existence of spin-resolved quantum
Hall edge channels.

In 2DEG at the interface of III-V semiconductors with
zinc-blende crystal structure there exists an intrinsic solid-state
SO coupling. We can distinguish two main contributions at
lowest order in the momentum: Rashba6,7 and Dresselhaus,8

characterized, respectively, by SO coupling parameters α and
β with clear and distinct physical origins. The Rashba coupling
arises as a consequence of the lack of structure inversion
symmetry in the confining potential, while the Dresselhaus
coupling takes its origin in bulk inversion asymmetry and
therefore just depends on the crystal-lattice structure.9 As a
consequence, the Rashba coupling parameter α is propor-
tional to the gradient of the potential in the perpendicular
direction (being tunable by external voltage gates10), while

the Dresselhaus parameter β is only sensitive to deep changes
in the crystal lattice affecting the structural integrity of the
heterostructure. Both Rashba and Dresselhaus contributions
may be present in a given semiconductor heterostructure, and
which of them is dominant depends on material parameters
and the perpendicular potential gradients.11 For instance, one
usually has pure Dresselhaus coupling in GaAs, or pure Rashba
coupling in InSb, while both can equally contribute in InAs.

The particular situation affecting a specific heterostructure
can be experimentally determined using weak localization to
antilocalization transitions12 or photocurrent measurements
of the angular distribution of the spin density.13 The Rashba
parameter α has been estimated by an analysis of the nodes
of the beating patterns in the Shubnikov–de Haas oscillations
of the longitudinal magnetoresistance under magnetic fields
in InGaAs/InAlAs (Ref. 10) and HgTe.14 Quite recently, it
has also been determined by scanning tunneling spectroscopy
(STS) in InSb surface gases15,16 at high magnetic fields, with
an extraction of the coupling constant α from the positions of
the nodes of the density of states (DOS).

Importantly, the STS technique gives primarily access
to the local density of states (LDOS), and thus provides
an opportunity to reveal the spatial fluctuations of the SO
coupling parameter on a local scale. Indeed, random spatial
fluctuations of the Rashba SO coupling are naturally expected
in semiconductor heterostructures because the electric field
perpendicular to the well is created by dopant ions whose
concentration unavoidably fluctuates spatially.17 Therefore,
the electron motion in the 2DEG is affected, in principle, by
two different kinds of disorder, which are a priori locally
uncorrelated: the electrostatic (in-plane) disorder potential
V (r) acting on the charge motion, and a fluctuating SO Rashba
coupling α(r). These fluctuations in the Rashba coefficient
are known to influence the spin dynamics under weak but
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classical magnetic fields by inducing memory effects for the
spin relaxation.18

Recent STS measurements by Morgenstern et al.15,16 in
InSb surface gases at high magnetic fields (within the quantum
Hall regime) have shown that the energy spin splitting indeed
varies spatially, what one could naively directly attribute to
spatial fluctuations of the Rashba coupling. More precisely, a
spin-split LDOS has been clearly observed only when the tip
position is located close to the local extrema of the disorder
potential, the energy spin splitting being typically16 larger at
hills of the potential landscape (close to local maxima), and
smaller at valleys (near minima). In regions where the gradients
of the potential landscape are strong, the energy spin splitting
could not be determined due to the enlarged linewidth of the
LDOS.

In this paper, we provide a simple explanation for this
observed puzzling correlation15,16 between the spatial disper-
sion of the spin splitting and the disorder potential landscape.
We stress that these recent STS measurements have been
performed at high magnetic fields in the quantum Hall regime,
an important aspect which has to be carefully taken into
account within the theoretical interpretation of the LDOS
characteristic features.

B. Spectral properties of 2DEG in high magnetic fields with
Rashba spin-orbit interaction

Numerous theoretical works have already considered the
spectral properties of 2DEG with a uniform Rashba SO
coupling in strong quantizing magnetic fields. Under these
conditions, it is required to include in the description the
Zeeman coupling, which also contributes to the energy spin
splitting. The resulting energy levels in the absence of potential
energy are known since several decades,6,7 with the result

En,λ = �ωc

[
n − λ

2

√
(1 − Z)2 + nS2

]
. (1)

Here, n = 0,1,2, . . . is an integer and λ = ±1 is the SO
index which corresponds to two different projections along
the Rashba-dependent spin axis (note that for n = 0, only the
projection λ = −1 is allowed). The corresponding eigenstates
have a spinorial structure composed out of adjacent Landau
level states which are associated with quantizations of the
electronic cyclotron orbits in a magnetic field. The dominant
energy scale at high magnetic fields is the cyclotron energy
�ωc. The energy levels depend through the SO index λ

on two other energy scales appearing in Eq. (1) via the
dimensionless quantities S and Z which characterize the
Rashba SO coupling and the Zeeman interaction, respectively.
The explicit microscopic expressions for these quantities are
provided in Sec. II.

An obvious effect of the SO coupling is to generate
nonequidistant energy levels (1). Moreover, the competition
between the Zeeman and SO couplings leads to interesting
effects for the energy spin splitting. Indeed, two nearby energy
levels with opposite index λ can even become arbitrarily close
and, at special values of the quantity S which depend on
the magnetic field, the spin gap may vanish, giving rise to
an accidental double degeneracy. These particular degeneracy
points have been previously related both to resonances in the

spin Hall conductance in the absence of disorder19–21 and to
the beating pattern of the DOS.15,16

It is worth emphasizing that the energy levels (1) in the
pure case present also a large degeneracy with respect to
the guiding-center location (in other terms, the center of the
cyclotron orbit), independently of the strengths of the Zeeman
and SO couplings. All the degeneracies within the energy
spectrum are expected to be lifted in the presence of a random
potential energy. In this work, we shall essentially address
the associated fine structure of the energy levels, i.e., we
shall study in a quantitative way how the energy spectrum
(1) is modified by the presence of an arbitrary potential energy
varying smoothly in space. Note that, contrary to the DOS, a
proper description of the LDOS behavior also requires to know
in precise terms the wave functions in addition to the energy
spectrum. The theory developed in this paper shows how it is
possible to devise a controlled approximate solution for the
electronic states in the peculiar high magnetic field regime.

As a warming up, it is always instructive to consider toy
models assuming a potential energy with a simple spatial
dependence. Unfortunately, most of the simplest models are
not tractable quantum mechanically in a fully analytical form
and one has often to resort to numerical simulations to get
some physical insight. For the hard-wall potential, there are
theoretical studies using either a wave-function formalism22,23

or semiclassical approaches based on SU(2) (spin) coherent
states,24 with numerical studies mostly available in the
literature.24–26 The one-dimensional (1D) parabolic model
for confinement is also not fully analytically tractable in
the presence of an external magnetic field and both Rashba
and Zeeman interactions. This toy model for the edge states
in the regime of the integer quantum Hall effect has been
studied using numerical techniques27 or analytically but
without properly controlled approximation schemes.28 Two-
dimensional quadratic confining potentials have also been
investigated, only numerically, as models for semiconductor
quantum dots.11,29–32

II. SHORT SUMMARY OF THE RESULTS

A. Characteristic features of the quantum Hall regime

The above-mentioned theoretical works have not specif-
ically addressed the regime of the quantum Hall effect, for
which the smooth disorder in the 2DEG plays a crucial
role by producing both localized and delocalized electronic
states. These disorder effects can be well captured within a
semiclassical picture33–37 involving a natural decomposition of
the electronic motion in terms of a rapid cyclotronic motion and
a slow drift of the guiding center. At high magnetic fields, these
two kinds of motions decouple, constraining the guiding center
to follow the equipotential lines of the disordered electrostatic
potential. As a result, most of the states are localized since
the disordered potential landscape is principally constituted
by closed equipotential lines. Delocalization of the electronic
states throughout the system is then only possible by following
an extended percolating backbone occurring at a single critical
energy and passing through many saddle points of the disorder
landscape.38
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A hallmark of this high magnetic field regime is thus
the strong reduction of the communication between the
cyclotronic and guiding-center degrees of freedom, which
corresponds to neglecting Landau level mixing in a quantum-
mechanical picture. At the technical level, the projection
within a single Landau level has been mainly presented in
the literature39 for the lowest Landau level, by exploiting the
analyticity properties of the wave functions. The generalization
of this wave-function technique for the Landau levels n � 1
has been formulated40 20 years later, at the price of numerous
complications. In the recent years, an alternative projection
technique has been developed by two of us in the language
of semicoherent vortex Green’s functions.41–43 This vortex
approach appears more general because it treats all the Landau
levels on an equal footing, and allows one also, in principle, to
include perturbatively the mixing between the Landau levels.
It relies on a very basic idea, namely, the introduction of the
orbital and guiding-center degrees of freedom in the quantum
realm by working preferentially with a basis of eigenstates (in
the pure case) characterized by two quantum numbers n and
R. The degeneracy quantum number R = (X,Y ) corresponds
to the guiding-center position in a classical picture and labels
the location in the plane of the zeros of the wave function (via a
coherent-states algebra). The vortex theory is then nothing else
but the translation in the quantum-mechanical language of the
decomposition of the electronic motion into a fast cyclotronic
rotation and a slow guiding-center drift.

A substantial part of this paper is a generalization of
this vortex approach by taking into account in the quantum-
mechanical formalism both the charge and spin degrees
of freedom, and, especially, their mutual coupling via the
SO interaction. Indeed, a direct application of the previous
results41–43 is not possible stricto sensu because the SO cou-
pling leads to a specific spinorial form for the wave functions
in the pure case, which requires the introduction of a new
kind of vortex states. From the geometric point of view, these
SO vortex states labeled by the quantum numbers (n,R,λ)
present a probability density characterized by two maxima
peaked along the cyclotron orbits of two adjacent spin-resolved
Landau levels as represented in Fig. 1(b). The different radii
collapse into a single one Rn in the limit of vanishing SO
coupling as shown in Fig. 1(a) and the spinor structure of the
states becomes trivial. This already suggests a simple physical
picture to understand the role of disorder in quantum Hall
systems with SO coupling: Each of the components of the
spinor is sensitive to different effective disorder potentials
which result from the averaging of the potential energy along
distinct cyclotron orbits, and the interplay between the two
components gives the characteristic hallmarks of quantum Hall
systems with Rashba and Zeeman couplings.

The theory developed here provides an analytical deriva-
tion of this mechanism for disorder potential-driven spatial
fluctuations of the energy spin splitting in the framework of a
semicoherent-states Green’s function formalism. As a simple
estimation, we obtain in a weak SO coupling limit S � |1 − Z|
in the case Z < 0 (situation for InSb) an energy spin splitting
[between the lowest-energy states (1,+) and (0,−)] given by

Es(R) � E0,− − E1,+ − 1

8

(
S

1 − Z

)2

l2
B�RV (R), (2)

FIG. 1. Schematic illustration of the quantum cyclotron orbits
for the spin vortex states [column (a)] and the SO vortex states for
small SO coupling [column (b)]. The top/bottom rows correspond
to the different spin or SO indices (for α = 0, one recovers the
usual spin indices σ ). The probability density is peaked along two
circles with cyclotron radii Rn and Rn∓1 (the latter associated to the
components σ = + and −, respectively). The thick circles represent
the dominant contribution to the probability density, while the thin
circles correspond to the subdominant one. For nonzero SO coupling,
each of the components of the spinor is sensitive to different averages
of the disorder potential along the orbits, due to the differences in
the probability density. This leads to a simple mechanism responsible
for disorder potential-driven spatial fluctuations of the energy spin
splitting.

with lB the magnetic length and �RV (R) the Laplacian of the
potential energy function taken with respect to the guiding-
center position. Expression (2) shows that nontrivial features
appear due to the interplay between Rashba SO coupling,
Zeeman interaction, and smooth disorder. The resulting overall
energy spin splitting appears well correlated with the disorder
potential landscape, with a larger splitting obtained near the
potential hills [where typically �RV (R) < 0] than near the
potential valleys [where �RV (R) > 0].

Smooth random fluctuations in the SO coupling parameter
give rise to another mechanism for a spatial dispersion of
the spin splitting, which will be also accounted for within our
Green’s function formalism. The analytical expressions for the
energy spectrum and the LDOS derived in this paper should be
very helpful for a future thorough comparison between theory
and STS experiments, in particular in order to quantify local
fluctuations of Rashba SO coupling. We can nevertheless point
out that the experimentally noticed16 correlation between the
spatial dispersion of the energy spin splitting and the local
extrema of the potential landscape in InSb rather suggests that
the contribution from the Rashba SO coupling fluctuations
is seemingly less important than that induced by the spatial
fluctuations of the disordered potential.

B. Organization of the paper

The paper is organized as follows. First, in Sec. III, we
introduce the SO vortex states, which are peculiar eigen-
states of the free-electron Hamiltonian under perpendicular
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homogeneous magnetic fields in the presence of uniform
Rashba and Zeeman interactions. These states forming an
overcomplete basis of semicoherent spinors constitute the
elementary units for the developed theory. In Sec. IV, we
introduce the Green’s function formalism using the SO vortex
states and obtain the general equations of motion for the
Green’s function including energy-level mixing processes
in the presence of disorder and fluctuations of the Rashba
SO parameter. These equations, which can be related to a
deformation quantization formulation of quantum mechanics,
are then solved in the limit of negligible coupling between
energy levels in Sec. V for electronic drift states. As a result, we
obtain the energy spectrum for arbitrary locally flat potentials
in the presence of smooth fluctuations of the Rashba SO
coupling parameter, the formula becoming exact for globally
flat potentials with zero Gaussian curvature. Furthermore,
we present in this Sec. V simple analytical estimations of
the spatial dispersion between arbitrary spin-split energy
sublevels. Finally, in Sec. VI, we use the Green’s function
obtained in Sec. V to analytically compute the LDOS in the
quantum Hall regime in the presence of a smooth arbitrary
disorder, which can be described by locally flat potentials and
smooth Rashba fluctuations. This allows us to determine the
spatial dispersion and the linewidth of the LDOS peaks in
different temperature regimes.

III. SPIN-ORBIT COUPLING IN THE FREE
TWO-DIMENSIONAL ELECTRON GAS

A. Vortex states for the standard 2DEG

For the sake of simplicity, we first introduce the vortex
states in the spinless case.44 They will be useful to construct
the elementary components in the presence of SO coupling,
upon which the whole Green’s function theory relies. We
thus consider the Hamiltonian for a single spinless electron of
effective mass m∗ and electric charge e = −|e| confined in a
two-dimensional (2D) plane in the presence of a perpendicular
magnetic field B = B ẑ:

Ĥ2DEG = �̂
2

2m∗ = �̂2
x + �̂2

y

2m∗ , (3)

where

�̂ = −i�∇r − e

c
A(r) (4)

is the gauge-invariant momentum operator written in the
position representation [here, r = (x,y) describes the position
of the electron in the 2D plane and c is the speed of light]
and A(r) is the electromagnetic vector potential related to
the magnetic field by the usual constitutive relation B = ∇r ×
A(r). The eigenvalue problem for Hamiltonian (3), Ĥ2DEG	 =
E	, gives the well-known Landau spectrum characterized by
discrete energy levels

En = �ωc

(
n + 1

2

)
, (5)

with n � 0 a positive integer and ωc = |e|B/(m∗c) the
cyclotron pulsation. The energy levels, labeled by the Landau
level index n, have a purely topological origin related to the
quantization of the magnetic flux enclosed by the cyclotron
orbits induced by the Lorentz force on the charged particles

(or, correspondingly, the quantization due to self-interference
in the electronic circular motion). Accordingly, n can be
interpreted as the number of magnetic flux quanta 
0 = hc/|e|
enclosed by the cyclotron trajectory.

The Landau levels En are infinitely degenerate since the
motion of the electron has two degrees of freedom (we thus
expect here two quantum numbers to be involved). This means
that there is a great liberty in the choice of the basis states which
diagonalize the Hamiltonian in Eq. (3), the particular choice
depending on the symmetry of the gauge-invariant probability
density |	|2. Imposing the probability density to be a function
of |r − R| only, so that it reflects the classical orbital motion
of the electron around a guiding center R, we obtain the
set of overcomplete vortex states44,45 which are expressed in
the symmetrical gauge A(r) = B × r/2 as

	n,R(r) = 1√
2πl2

Bn!

[
x − X + i(y − Y )√

2lB

]n

× exp

[
− (x − X)2 + (y − Y )2 + 2i(yX − xY )

4l2
B

]
,

(6)

where lB = √
�c/(|e|B) is the magnetic length.

The vortex states, which can be written as 	n,R(r) =
〈r|n,R〉 in the Dirac notation, are characterized by the set
of quantum numbers ν = {n,R}. They are so called because
the continuous quantum number R = (X,Y ) characterizes (for
n � 1) the position of the zeros of the wave function, which
corresponds to vortexlike phase singularities in the 2D plane.
The eigenstates |n,R〉 form a peculiar semicoherent basis
since they satisfy the coherent-states algebra with respect
to the continuous (degeneracy) quantum number R. As a
consequence, they are orthogonal with respect to the Landau
level index but nonorthogonal with respect to the vortex
position. They form a semiorthogonal basis with the overlap

〈n1,R1|n2,R2〉 = δn1,n2〈R1|R2〉, (7)

where

〈R1|R2〉 = exp

[
− (R1 − R2)2 − 2iẑ · (R1 × R2)

4l2
B

]
. (8)

Importantly, they obey the following completeness relation:∫
d2R

2πl2
B

+∞∑
n=0

|n,R〉〈n,R| = 11orb, (9)

which allows us to project the 2D electron dynamics within
this vortex representation.

The vortex basis also provides considerable advantages
in order to describe the lifting of the energy degeneracy
by an arbitrary (smooth) potential landscape V (r) since
the degeneracy quantum number does not result from a
particular symmetry, in contrast to the Landau states basis
expressing a translation invariance, or the circular states basis
characterized by a global rotation invariance. More precisely,
the degeneracy in the vortex representation is grasped from a
differential geometry perspective via the continuous position
R, which avoids to define the specific shape of the quantum
cell. As a result, the vortex states are characterized by a
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great local adaptability to random spatial variations of the
potential energy, i.e., they display some robustness properties
in response to arbitrary local perturbations. This is the basic
reason why they are chosen as a preferred set of states to deal
with a realistic description of disorder effects.

B. Spin-orbit vortex states

Now, we consider that the electron has a spin s = 1
2 . The

single-particle Hamiltonian for the electron in the presence
of Rashba SO coupling and Zeeman interaction can then be
written as

Ĥ0 = Ĥ2DEG ⊗ 11s + ĤR + ĤZ, (10)

where Ĥ2DEG is given in Eq. (3) (here, 11s is the 2 × 2 identity
matrix that represents the identity operator in spin space and
⊗ the tensor product symbol). ĤR is the Rashba Hamiltonian6

which describes the coupling between the orbital and spin
degrees of freedom:

ĤR = α[�̂ × σ ]z = α[�̂x ⊗ σy − �̂y ⊗ σx], (11)

with α ≡ 〈α(r)〉 the spatially averaged Rashba SO parameter
and σ = (σx,σy,σz) a vector whose components are the Pauli
matrices. Finally, ĤZ is the Zeeman interaction term

ĤZ = 1
2gμBB ⊗ σz, (12)

which describes the coupling between the electron’s spin and
the external magnetic field. Here, g is the Landé g factor and
μB = |e|�/(2m0c) is the Bohr’s magneton with m0 the bare
electron mass.

Since the Hamiltonian in Eq. (10) presents a matrix
structure in the spin space, we shall look for wave-function
solutions of the eigenvalue problem

Ĥ0	̃ = E	̃, (13)

with the following SO vortex states:

	̃n,R(r) =
∑
σ=±

fσ (θ )	nσ ,R(r) ⊗ |σ 〉, (14)

where 	nσ ,R(r) are the spinless vortex states given in Eq. (6),
|σ 〉 are the eigenstates of the Pauli matrix σz, i.e., σz|σ 〉 =
σ |σ 〉, and the weights fσ (θ ) of the spinor components are
defined according to

fσ (θ ) =
{

sin(θ ), σ = +
cos(θ ), σ = − (15)

and

nσ =
{
n − 1, σ = +
n, σ = −.

(16)

This form of the spinor wave function can be traced back
to Eq. (11) written in terms of the matrices σ± = σx ± iσy ,
where it is easy to see that the Rashba Hamiltonian couples
Landau levels which differ in just one unit. The diagonalization
is straightforward by defining the operators �̂± ≡ �̂x ± i�̂y

whose action on the vortex states is

�̂+|n,R〉 = i�

√
2

lB

√
n + 1|n + 1,R〉, (17a)

�̂−|n,R〉 = −i�

√
2

lB

√
n|n − 1,R〉. (17b)

Performing the substitution into Eq. (13), we get the
following set of coupled algebraic linear equations:(

En−1 + 1

2
gμBB

)
− α�

√
2n

lB
cot θ = E, (18a)(

En − 1

2
gμBB

)
− α�

√
2n

lB
tan θ = E, (18b)

which can be readily solved. The eigenenergies for the
Hamiltonian of the clean system are therefore

E ≡ En,λ = �ωc

[
n − λ

2

√
(1 − Z)2 + nS2

]
, (19)

with n � 1 and λ = ± the SO quantum number.46 For n = 0,
the above equation still holds but we have necessarily λ = −.
The dimensionless parameters S and Z, which measure the
strength of the Rashba SO coupling (per magnetic length) and
the Zeeman interaction relative to the cyclotron energy, are
defined as

S ≡ α2
√

2

ωclB
, Z ≡ gμB

�|e| m∗c = g

2

m∗

m0
. (20)

We shall assume throughout this paper that 1 − Z > 0.
As in the spinless 2DEG described in Sec. III A, the

eigenenergies are again highly degenerate with respect to the
guiding-center position in the absence of potential energy.
This means that there is a great freedom in the choice of the
basis which diagonalizes Eq. (10), this liberty being already
taken into account in the particular (nonunique) choice of the
ansatz (14).

The energy spectrum (19) formally interpolates between
the usual Landau spectrum, linear in the Landau level index
and given by En,± = �ωc(n + 1/2 ± Z/2) for S = 0, and
the relativistic (graphenelike) spectrum, with its characteristic
square-root dependence on n expected for massless Dirac
fermions, En,± � ±��c

√
n for n � 1 in the limit |S|  √

n

(here, �c = α
√

2/lB can be identified with the graphene
characteristic frequency once we recognize that α plays the
same role as the Fermi velocity vF). The limit |S| → 0,
for which the SO and the spin quantum numbers become
equivalent λ ≡ σ , requires a relabeling of the energy-level
index according to the mapping n−σ + 1 → n, in order to
reintroduce the picture of the splitting of each Landau level
into two spin-polarized sublevels by the Zeeman interaction
only.

In addition, energy spectrum (19) is quite rich and presents
multiple level crossings as a function of the SO coupling α or
the magnetic field. These crossings occur whenever En1,λ1 =
En2,λ2 with n1 �= n2 and necessarily λ1 = −λ2, a condition
which can be cast in the form of a biquadratic equation for the
dimensionless parameter S:

S4 − 8(n1 + n2)S2 + 16[(n1 − n2)2 − (1 − Z)2] = 0. (21)

This equation yields level intersections for the special values

Sc = 2
√

(n1 + n2) −
√

4n1n2 + (1 − Z)2. (22)

We deduce that the crossings involve different energy levels
such that |n1 − n2| > 1 − Z. The associated double degener-
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FIG. 2. (Color online) Energy spectrum (in units of the cyclotron
energy �ωc) resulting from Eq. (19) in the absence of potential energy,
as a function of the dimensionless SO parameter S. Values are taken
from STS measurements (Refs. 15 and 16) in InSb semiconductor:
m∗ = 0.035m0, g = −21, �α = 7 × 10−11 eV m. The dashed line
shows the particular value Sexp � 0.88 (reached for B = 7 T) at which
a pronounced spatial dispersion of the energy spin splitting has been
noticed experimentally (Ref. 16).

acy is expected to be lifted in the presence of a smooth disorder
potential.

Physically speaking, it is always interesting to have an
idea of the energy scales involved. As a general rule, the
characteristic Rashba energy ESO = m∗α2 is of the order of
0.1–1.0 meV, one order of magnitude below the typical energy
scale related to cyclotron motion (at B = 1 T). However,
in 2D heterostructures where the SO coupling is strong due
to heavy elements such as in InSb, both energies can be
of similar order of magnitude. For example, considering the
values of the effective mass m∗ = 0.035m0, the Landé g factor
g � −21, and the Rashba coupling constant �α = 7 × 10−11

eV m taken from Ref. 15, the cyclotron energy at B = 1 T
is �ωc � 3 meV, which is of the same order as the Rashba
characteristic energy (ESO � 3 meV). In the clean spectrum
(19), the relevant quantities are the Rashba and Zeeman
dimensionless parameters S and Z given by Eq. (20), which
take the values S � 2.33 and Z � −0.37 for B = 1 T. We have
plotted in Fig. 2 the resulting energy spectrum (19). Note that,
in the absence of electron-electron interaction, the quantity
S decreases when increasing the magnetic field amplitude as
S ∼ lB , while Z on the other hand remains constant. Since even
for high magnetic fields of several Teslas, S can be of the order
of unity, the understanding of the interplay between Zeeman
and Rashba couplings in a given energy level n becomes
crucial.

Using the Dirac notation and introducing the multi-index
ν = {n,R,λ} for the set of quantum numbers, the normalized
SO vortex states take the form

|ν〉 ≡ |n,R,λ〉 =
∑
σ=±

fσ

(
θλ
n

)|nσ ,R〉 ⊗ |σ 〉, (23)

where the angles θλ
n are defined by

θλ
n = arctan

[
(1 − Z) + λ

√
(1 − Z)2 + nS2

S
√

n

]
(24)

for n � 1 and θ−
0 = 0 if n = 0. For n � 1, we also have the

relation

θ+
n = θ−

n + π/2, (25)

which guarantees the orthogonality of the SO vortex states
belonging to the same level n but having opposite SO quantum
number λ. Furthermore, Eq. (25) implies that the function
fσ (θλ

n ) satisfies the following sum rules:∑
σ=±

fσ

(
θλ1
n

)
fσ

(
θλ2
n

) = δλ1,λ2 , (26a)

∑
λ=±

fσ1

(
θλ
n

)
fσ2

(
θλ
n

) = δσ1,σ2 , (26b)

which can be seen as completeness relations that hold in the λ

and σ subspaces.
Not surprisingly, the SO vortex states present the same prop-

erties as their spinless counterparts. Using the orthonormality
relation satisfied by the spin states 〈σ1|σ2〉 = δσ1,σ2 , it can be
readily checked that the SO vortex states are semiorthogonal:

〈ν1|ν2〉 =
∑
σ1,σ2

fσ1

(
θλ1
n1

)
fσ2

(
θλ2
n2

)〈
n1σ1 ,R1

∣∣n2σ2 ,R2
〉〈σ1|σ2〉

= δn1,n2〈R1|R2〉
∑
σ1=±

fσ1

(
θλ1
n1

)
fσ1

(
θλ2
n2

)
= δn1,n2〈R1|R2〉δλ1,λ2 . (27)

Finally, introducing the shorthand notation∑
ν

=
∫

d2R

2πl2
B

+∞∑
n=0

∑
λ=±

(28)

for the sum over the quantum numbers and using the
completeness relation satisfied by the vortex states (9), we
can easily verify that the set of SO vortex states forms a basis
with the completeness relation∑

ν

|ν〉〈ν| =
∫

d2R

2πl2
B

+∞∑
n=0

∑
λ=±

∑
σ=±

∑
σ ′=±

fσ

(
θλ
n

)
fσ ′

(
θλ
n

)
× |nσ ,R〉〈nσ ′ ,R| ⊗ |σ 〉〈σ ′|

=
∫

d2R

2πl2
B

+∞∑
n=0

|n,R〉〈n,R| ⊗
∑
σ=±

|σ 〉〈σ |

= 11orb ⊗ 11s ≡ 11. (29)

IV. GREEN’S FUNCTION FORMALISM FOR
DISORDERED QUANTUM HALL SYSTEMS WITH

RASHBA SPIN-ORBIT COUPLING

A. Disorder and fluctuations of spin-orbit coupling

We consider now that the electron feels, in addition to
the external perpendicular magnetic field, the presence of
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a (generalized) potential. Therefore, the Hamiltonian will
contain, aside from the kinetic energy part Ĥ0 given in Eq. (10),
a potential energy term Û :

Ĥ = Ĥ0 + Û . (30)

The operator Û can be written as

Û = V̂ (r) ⊗ 11s + δĤR, (31)

with V (r) a scalar potential and δĤR the fluctuating Rashba
Hamiltonian operator

δĤR = 1
2 {δ̂α(r),[�̂ × σ ]z}. (32)

Here, { . . . , . . .} is the anticommutator [i.e., {Â,B̂} ≡
ÂB̂ + B̂Â where Â and B̂ are two arbitrary operators] which
ensures the Hermiticity of the fluctuating Rashba Hamiltonian
and accounts for the noncommutativity between the spatial
fluctuations of the Rashba parameter δα(r) and the gauge-
invariant momentum. These spatial fluctuations are induced by
random local electric fields perpendicular to the 2DEG plane,
fluctuations in the concentration of donor ions or randomness
in the direction of the crystal axis due to inhomogeneous
growth or local strain.17,18 In principle, we shall require
the correlations 〈δα(r)δα(r′)〉 of the Rashba SO coupling
parameter to be described by a smooth distribution function
which depends only on the difference between two electronic
positions r − r′ (this correlation function is a priori different
from the correlation function that characterizes the spatial
fluctuations of the scalar potential).

The scalar potential V̂ (r) in Eq. (31) accounts for several
physical mechanisms: it includes the effect of confinement,
random impurity potentials, mean-field Coulomb interaction
between the electrons or external nonequilibrium electric
fields. This potential can be strikingly different from the bare
electrostatic one due to screening effects, i.e., redistribution
of the electron density at the Fermi level, leading to the
formation in the sample of alternating compressible and
incompressible regions of different widths at high magnetic
fields.47,48 Note that, in principle, it is necessary to include both
direct and exchange interactions between electrons in order to
microscopically determine the total scalar potential.49–51

In addition, the exchange coupling can renormalize (and
enhance) the Rashba SO interaction parameter52 and the
Landé g factor53 in 2DEG. This enhancement of Rashba SO
interaction can be described within the present theory since
it can be included as an additional fluctuation δα of the bare
SO coupling parameter α. In the case of the Landé g factor,
our theory also accounts for a global enhancement by simply
replacing the bare g factor by a renormalized one g∗ which now
can depend on the external parameters such as the magnetic
field, temperature, or the macroscopic electron density. Local
enhancement of the g factor requires a minor modification to
this theory (not presented here) where the spin-diagonal scalar
potential is substituted by a scalar potential that depends on
the spin projection V̂σ (r).

B. Equation of motion for the Green’s function in the spin-orbit
vortex representation

To investigate the combined effects of a smooth disorder
potential and random Rashba fluctuations on the electron

dynamics, we shall use a semicoherent Green’s function
formalism which was previously developed to study disordered
2DEG (Ref. 42) and graphene43 in the quantum Hall regime.

The Green’s operators associated to the Hamiltonian (30)
are defined by the equation

(ω − Ĥ ± i0+)ĜR,A(ω) = 11, (33)

where the plus (minus) sign corresponds to the retarded
(advanced) Green’s operator, 0+ is a positive infinitesimal
quantity which encodes the information about the boundary
conditions for time evolution, and 11 is the identity operator.
The projection of the operator equation (33) onto a given
basis of states yields the equation of motion for the Green’s
function written in the energy representation (here, ω indicates
the energy resulting from the Fourier transformation of the
relative time dependence t1 − t2 of the Green’s function).
Alternatively, we may also introduce the Green’s function in
terms of the field operators ψ̂(x) [evaluated at a given point of
the space-time x = (r,t)] in the electronic representation

GR,A(x1; x2) = ∓i� [±(t1 − t2)] 〈{ψ̂(x1),ψ̂†(x2)}〉, (34)

where �(t) is the Heaviside step function [�(t) = 0 if t < 0
and �(t) = 1 if t � 0] and the brackets 〈. . .〉 represent the
thermodynamic average in the grand-canonical ensemble.
Because we consider a time-independent Hamiltonian, the
energy is conserved and the Green’s functions only depend
on the time difference τ = t1 − t2.

The completeness relation (29) satisfied by the SO vortex
basis allows us to express the Green’s operator in the SO vortex
representation {|ν〉}. Within this representation, the Green’s
function GR,A

ν1;ν2
(ω) = GR,A(n1,λ1,R1; n2,λ2,R2; ω) gives the

probability amplitude for a vortex with circulation n1 and SO
quantum number λ1 located at a position R1 to be scattered
elastically (energy ω is conserved within the process) at a
position R2 with the new circulation n2 and SO quantum
number λ2. In the absence of potential (Û = 0), the SO vortex
states are eigenstates of the Hamiltonian Ĥ0, so that from the
projection of Eq. (33) we get straightforwardly the unperturbed
Green’s function

G
R,A
0 ν1;ν2

(ω) = δn1,n2〈R1|R2〉δλ1,λ2

ω − En1,λ1 ± i0+ , (35)

where G
R,A
0 ν1;ν2

(ω) = 〈ν1|ĜR,A
0 (ω)|ν2〉 is the kernel of the free

Green’s operator [here, we have used the semiorthogonality
property (27) of the SO vortex states]. In the clean case, the
Green’s function is therefore diagonal both in the level index n

and the SO quantum number, and presents the typical coherent-
states nonzero overlap for the vortex position dependence.

In the presence of a potential Û (the particular form of the
potential is not important at this point), the Green’s function
can, in principle, be obtained by solving the Dyson equation
which can be written from projecting Eq. (33) onto the SO
vortex basis and using the completeness relation (29):(

ω − En1,λ1 ± i0+)GR,A
ν1;ν2

(ω)

= 〈ν1|ν2〉 +
∑
ν3

Uν1;ν3G
R,A
ν3;ν2

(ω), (36)

where Uν1;ν2 = 〈ν1|Û |ν2〉 are the matrix elements for
the potential Û in the SO vortex representation. It is clear from
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Eq. (36) that whenever Û �= 0, the Green’s function will gener-
ally be no longer diagonal with respect to the discrete quantum
numbers n and λ, the mixing between the latter depending on
the particular form of the potential energy function Û . In the
following, we shall only concentrate on the determination of
the retarded Green’s function, given that the advanced one
can be trivially inferred from the knowledge of the retarded
function at equilibrium. In order not to burden the expressions
unnecessarily, we shall also drop the retarded superscript.

C. Mixed phase space formulation of Dyson equation in the
spin-orbit vortex representation

Solving analytically Dyson equation (36) for an arbitrary
potential Û is a very difficult task. Nevertheless, it has been
found in Refs. 41 and 42 that, as a result of the coherent-state
character of the degeneracy quantum number R, the matrix
elements of the potential and the Green’s function must
necessarily take the form

Uν1;ν2 = 〈R1|R2〉TR12

[
un1,λ1;n2,λ2 (R12)

]
, (37)

Gν1;ν2 (ω) = 〈R1|R2〉TR12

[
gn1,λ1;n2,λ2 (R12,ω)

]
, (38)

where the vortex overlap 〈R1|R2〉 which contains the non-
analytical dependence on the magnetic length has been ex-
tracted. Here, TR represents the differential Gaussian operator
defined as

TR ≡ exp

(
l2
B

4
�R

)
, (39)

with �R the Laplacian taken with respect to the vortex
position and R12 = [R1 + R2 + i(R1 − R2) × ẑ]/2 a partic-
ular (complex) combination of the center of mass and
relative coordinates of two vortex positions. This functional
dependence implies that the full nonlocal Green’s function is
completely specified once the local SO vortex Green’s function
gn1,λ1;n2,λ2 (R,ω) at coinciding vortex positions R1 = R2 ≡ R
is known. In fact, this diagonal representation with respect
to the vortex position is a well-known property of coherent
states.54

After using the forms (37) and (38) and following the same
steps as for the standard 2DEG without SO coupling,41 Eq. (36)
can be exactly mapped onto the following equation of motion
for the function g(R,ω):(
ω − En1,λ1 + i0+)gn1,λ1;n2,λ2 (R,ω)

= δn1,n2δλ1,λ2 +
∑
n3,λ3

un1,λ1;n3,λ3 (R) � gn3,λ3;n2,λ2 (R,ω). (40)

The symbol � represents the pseudodifferential infinite-order
symplectic operator defined as

� ≡ exp

[
i
l2
B

2
(
←−
∂ X

−→
∂ Y − ←−

∂ Y

−→
∂ X)

]
, (41)

where the arrow above the partial derivative indicates to which
of the factors (left/right) the partial derivative is applied. In this
form, Eq. (40) is still a complicated matrix partial-differential

equation of infinite order. However, as we shall see in Sec. V,
it can be solved in high magnetic fields for important cases
depending on the specific form of the potential energy function.

The � product defined in Eq. (41) is completely analogous
to the Groenewold-Moyal product (see for instance Ref. 55),
with l2

B playing the role of an effective Planck’s constant and
the 1D conjugated variables (x,px) being replaced by (X,Y ).
It is ubiquitous in the deformation quantization theory,55 an
alternative formulation of quantum mechanics in phase space,
where the central object is the Wigner function in place of
the wave function. In this context, the � product allows us to
express quantum laws for noncommuting quantum operators
in terms of commuting variables making the correspondence
between classical and quantum substrates more transparent
than in the Hilbert space approach since classical mechanics
is obtained smoothly by a continuous limit of the deformation
parameter lB → 0. This noncommutative product between
functions can also be found in string theory, spin field
theory, and, in general, in noncommutative field theory.56

Transposed to the 2DEG under perpendicular magnetic fields,
this formulation becomes43 a mixed phase space deformation
quantization theory that combines discrete Landau levels and
a continuous phase space, which corresponds to the real space
for the guiding-center coordinates R = (X,Y ).

In the framework of the deformation quantization theory,
we can also give a meaning to the operator TR defined in
Eq. (39): It is simply the (invertible) transition operator which
dresses the so-called Wick-Voros product that controls the
dynamics of Husimi functions57 into the Groenewold-Moyal
product. The Husimi function can be directly defined as the
trace of the density matrix over the basis of coherent states
and turns out to be a Gaussian-smoothed Wigner function.
Both products originate from a generalized Weyl map57,58

which associates phase space functions to operators according
to certain quantization rules (Weyl or symmetric and Wick
or normal order, respectively). Although the passage from
the Wick-Voros to the Groenewold-Moyal product can be
regarded58 as a trivial rotation in phase space, it has highly
nontrivial consequences in the present case since it allows one
to tackle rather easily the Dyson equation in the SO vortex
representation in the case of 1D potentials U (r) (edge-states
problem) (see further). In some way, the operator TR realizes
the delocalization of the SO vortex states (which are originally
localized in any direction) along the equipotential lines of
U (r). As a final remark, it is worth specifying that we are
actually dealing here with peculiar Green’s functions rather
than with Wigner functions. Indeed, the time-independent
Wigner functions usually obey59 a homogeneous eigenvalue
equation (such as wave functions), while the function g(R,ω)
is given by the inhomogeneous equation (40) of the Dyson
type, which encloses in addition the causality principle.

Knowledge of the SO vortex Green’s function allows one
to compute quantum microscopic expressions of different ob-
servables. For that, the full Green’s function, related to the SO
vortex Green’s function by Eq. (38), should be written in the
electronic representation {|r〉}. The latter Green’s function is a
2 × 2 matrix in spin space given by G(r,r′,ω) = 〈r|Ĝ(ω)|r′〉,
whose matrix elements will be written as Gσσ ′(r,r′,ω) with
σ,σ ′ ∈ {±}. This change of representation (from vortex to
electronic states) can be easily accomplished via a change
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of basis

G(r,r′,ω) =
∑
ν1,ν2

Gν1;ν2 (ω)	̃†
ν2

(r′)	̃ν1 (r), (42)

where 	̃ν(r) = 〈r|ν〉 are the SO vortex wave functions defined
by Eq. (23). Then, following Ref. 41, we can perform
a change of coordinates (R1,R2) → (R12,Rrel) with Rrel =
(R2 − R1)/2, along with a Taylor expansion of the integrand to
compute analytically the integral over the relative coordinates
Rrel so that the electronic Green’s function is finally written
as an integral over the vortex position R12 only. In addition,
making an integration by parts so that the operator (39) acts
onto the product of vortex wave functions rather than on
the local SO vortex Green’s function, we obtain an exact
expression relating the electronic Green’s function to the
solution of Eq. (40):

Gσσ ′(r,r′,ω) =
∫

d2R

2πl2
B

∑
n1,λ1

∑
n2,λ2

fσ

(
θλ1
n1

)
fσ ′

(
θλ2
n2

)
×Fn1σ ,n2σ ′ (r,r′,R)gn1,λ1;n2,λ2 (R,ω), (43)

where we have defined the kernel function

Fn1,n2 (r,r′,R) ≡ T −1
R

[
	∗

n2,R(r′)	n1,R(r)
]
, (44)

with 	n,R(r) the vortex functions given in Eq. (6) and
fσ (θλ

n ) defined in Eq. (15) with the angular parameters (24).
Equation (43) is nothing but the quantum formulation of the
decomposition of the electronic motion into a cyclotronic
motion [encapsulated in the kernel function (44)] superposed
with a guiding-center (or vortex) motion characterized by
the Green’s function gn1,λ1;n2,λ2 (R,ω), which remains to be
determined.

D. Reduced matrix elements of the potential

The reduced matrix elements of the generalized potential
un1,λ1;n2,λ2 (R) can be written as a sum of the (reduced) matrix
elements of the scalar potential and of the contribution to the
Hamiltonian which includes the fluctuations of the Rashba SO
coupling parameter

un1,λ1;n2,λ2 (R) = vn1,λ1;n2,λ2 (R) + δHn1,λ1;n2,λ2 (R). (45)

Quite generally, the reduced matrix elements of the scalar
potential read as

vn1,λ1;n2,λ2 (R) = sin
(
θλ1
n1

)
sin

(
θλ2
n2

)
vn1−1;n2−1(R)

+ cos
(
θλ1
n1

)
cos

(
θλ2
n2

)
vn1;n2 (R), (46)

where

vn1;n2 (R) = T −1
R 〈n1,R|V̂ |n2,R〉 (47)

=
∫

d2η Fn1,n2 (η,η,0)V (η + R) (48)

plays the role of an effective scalar potential seen by the
vortex. Physically, it simply corresponds to an averaging of
the bare scalar potential V (r) over the cyclotronic motion. As
a result, the effective potential turns out to be always smoother
than the bare one. Expression (46) characterizes the additional

dependence of the total effective potential on the quantum
number λ resulting from the SO coupling.

In high magnetic fields, it appears judicious to write
alternatively the effective potential vn1;n2 (R) as a series in
powers of the magnetic length41

vn1;n2 (R) =
+∞∑
j=0

+∞∑
k=0

(−�R)j

j !

(
lB

2

)2j+k

v(k)
n1;n2

(R), (49)

with coefficients

v(k)
n1;n2

(R) = 2k/2

k!

k∑
l=0

(
k

l

)
(n1 + l)!√

n1! n2!
δn1+l,n2+k−l

× (∂X + i∂Y )l(∂X − i∂Y )k−lV (R). (50)

Substituting this expansion in Eq. (46), we see that at leading
order the total effective scalar potential in the limit lB → 0 is
clearly diagonal both in the level index n and the SO quantum
number

v
(0)
n1,λ1;n2,λ2

(R) = δn1,n2δλ1,λ2V (R). (51)

The next (subdominant) terms in lB will produce mixing
between different n and λ quantum numbers. The primary
effect of the potential energy is thus to lift the energy
degeneracy with respect to the guiding center by keeping the
level index n as a good quantum number. Note that, even when
processes mixing n are negligible, interesting effects related
to a mixing of the two projections of λ nevertheless occur
at quadratic order in lB [processes involving second-order
derivatives of the potential V (R)], providing a mechanism for
a spatial dispersion of the energy spin splitting.

Working analogously, the reduced matrix elements of
the Hamiltonian contribution describing the Rashba spatial
fluctuations read as

δHn1,λ1;n2,λ2 (R)

= −�
√

n1√
2lB

[
sin

(
θλ1
n1

)
cos

(
θλ2
n2

)
δαn1;n2 (R)

+ cos
(
θλ1
n1

)
sin

(
θλ2
n2

)
δαn1−1;n2−1(R)

]
+ (1 ↔ 2), (52)

where the notation (1 ↔ 2) means exchanging indices 1 and
2 in the former expression. Here, the matrix elements of the
fluctuating Rashba parameter are defined in the same way as
in Eqs. (47) and (48), with the potential energy operator V̂

replaced by the Rashba fluctuations δ̂α:

δαn1;n2 (R) = T −1
R 〈n1,R|δ̂α|n2,R〉 (53)

=
∫

d2η Fn1,n2 (η,η,0) δα(η + R). (54)

Again, the quantity δαn1;n2 (R) can be regarded as an effective
Rashba parameter resulting from the averaging of the Rashba
fluctuations over the cyclotronic motion. Expanding similarly
Eq. (54) in powers of lB , we get at high magnetic fields the
leading contribution

δH(0)
n1,λ1;n2,λ2

(R) = −�
√

n1√
2lB

sin
(
θλ1
n1

+ θλ2
n2

)
δn1,n2 δα(R), (55)
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which is still diagonal in the level index n, but now predomi-
nantly induces a mixing in the SO quantum number λ.

V. ENERGY SPECTRUM FOR DRIFT STATES IN WEAKLY
CURVED SCALAR POTENTIALS

A. High magnetic field regime

So far, we have made no approximation until here, the
Dyson equation (40) being valid for any value of the external
magnetic fields. We now focus on the high magnetic field
regime which is characterized by negligible mixing between
the integers n. This regime corresponds to considering ωc →
+∞ while keeping lB finite (this is formally equivalent to the
limit m∗ → 0). Only the matrix elements of the vortex Green’s
function diagonal in the level index n are then relevant, so that
we can write

gn1,λ1;n2,λ2 (R,ω) � gn1;λ1;λ2 (R,ω) δn1,n2 . (56)

As a result, Dyson equation (40) takes the simpler form(
ω − En,λ1 + i0+)gn;λ1;λ2 (R)

= δλ1,λ2 +
∑
λ3

un;λ1;λ3 (R) � gn;λ3;λ2 (R,ω), (57)

where un1;λ1;λ2 (R) = un1,λ1;n2,λ2 (R) δn1,n2 reads as

un;λ1;λ2 (R) = vn;λ1;λ2 (R) − �
√

2n

lB
sin

(
θλ1
n + θλ2

n

)
δαn(R).

(58)

The matrix elements of the scalar potential take the form

vn;λ1;λ2 (R) = sin
(
θλ1
n

)
sin

(
θλ2
n

)
vn−1(R)

+ cos
(
θλ1
n

)
cos

(
θλ2
n

)
vn(R), (59)

where the effective potentials vn(R) ≡ vn;n(R) can be straight-
forwardly inferred from Eq. (48). The term δαn(R) defines the
average of the Rashba fluctuations for the spin-split nth level

δαn(R) = 1
2 [δαn(R) + δαn−1(R)] , (60)

with δαn(R) ≡ δαn;n(R). Note that in the high magnetic field
regime, expression (58) is symmetrical in the SO quantum
numbers, i.e., un;λ1;λ2 (R) = un;λ2;λ1 (R), and therefore so must
be the SO vortex Green’s function gn;λ1;λ2 (R) = gn;λ2;λ1 (R).

As already alluded to in the Introduction, the projection
within a single Landau level expresses the ineffective energy
exchange between the guiding-center (or vortex) motion and
the cyclotronic motion, which are characterized by very differ-
ent time scales in high magnetic fields. In the quantum realm,
this exchange is only possible via a change of the Landau level
index (classically, this would correspond to a deformation of
the cyclotron orbit with a change of the cyclotron radius) which
is prohibited by a large cyclotron gap in the spinless 2DEG.
Whenever the Landau level mixing becomes negligible, the
electron (more properly, the vortex) motion reduces to quasi-
1D ballistic dynamics. The consideration of a finite magnetic
length in the high magnetic field regime allows one to account
for quantum effects within the 1D vortex dynamics, such
as interference effects responsible for tunneling or potential
energy quantization.

In the presence of SO coupling, the situation becomes
somehow more tricky due to the possibility to induce tran-
sitions between different energy levels via the spin (extra)
degree of freedom. In fact, neglecting level mixing between
different n can be justified whenever scattering due to the
effective potential un1,λ1;n2,λ2 (R) from one state (with a given
SO projection) to another one (necessarily, with opposite SO
projection) is energetically forbidden due to the separation
between the energy levels. Within the lB expansion of the
effective potentials, we have seen in the previous section that
the coupling between energy levels comes out with potential
gradients, so that a simple quantitative (smoothness) criterion
to neglect their mixing is

lB |∇RU (R)| � ∣∣En2,λ − En1,−λ

∣∣. (61)

As pointed out in Sec. III B, the eigenenergies En,λ in the
pure case are no more equidistant in the presence of both SO
and Zeeman interactions. The energy spectrum (cf. Fig. 2) is
even characterized by level crossings for specific values of
the parameter S. Clearly, level mixing processes, albeit small
when considering a potential smooth at the scale of lB , can not
be neglected for these special points of the parameter space.
However, as long as we are not working in the close vicinity of
these points, inequality (61) tells us that we can safely ignore
the mixing between the energy levels.

B. Quantum drift states

The main difficulty in solving Eq. (57) resides in its
differential character featured by the � product. Remarkably,
this infinite-order differential operator reduces exactly to a
simple product for any 1D potential un;λ1;λ2 (R). For an arbitrary
2D potential, we expect that replacing the � product by a
multiplication is a very good approximation provided that
the equipotential lines are relatively straight. This drift-state
approximation amounts to describing the potential energy as
a locally flat landscape, ignoring its Gaussian curvature which
involves second-order derivatives of the potential in orthogonal
directions. We have shown in a previous work42 that this
approximation is quantitatively valid for the local (thermal)
vortex Green’s function as long as the curvature energy, which
is a very small energy scale for a smooth potential, is smaller
than the temperature energy scale. Curvature effects play an
important role to lift the quantum degeneracy of the Landau
levels only at very low temperatures and close to the critical
points of the potential landscape where the drift velocity
vanishes. Within the context of the quantum Hall effect, this
picture of quantum drift states in weakly curved equipotential
lines of the disorder potential has been originally developed by
Trugman35 in terms of approximate Landau wave functions.
We hereby formulate a similar implementation in terms of
vortex Green’s functions, which has the great advantage of not
relying on a peculiar parametrization of the equipotential lines
which can become especially cumbersome for a disordered
potential landscape.

In this work, we shall only consider the leading drift approx-
imation, thus ignoring the curvature effects. By making the
approximation � � ×, the system of linear partial-differential
equations transforms into a system of linear coupled algebraic
equations which can be exactly solved by 2 × 2 matrix
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inversion. For n � 1, the resulting SO vortex Green’s function
presents a double-pole structure

gn;λ1;λ2 (R,ω) =
∏
ε=±

1

ω − ξn,ε(R) + i0+
{[

ω − En,λ1

−un;λ1;λ2 (R)
]
δλ1,λ2 + un;−λ1;−λ2δ−λ1,λ2

}
. (62)

After some algebra involving Eqs. (25) and (58), the eigenen-
ergies given by the poles (including the potential energy
contributions) are written as

ξn,ε(R) = �ωc

[
n − ε

2

√
�n(R)

]
+ vn(R), (63)

where ε = ± is a new SO quantum number (redefined due to
the mixing between λ1 and λ2) and

�n(R) = [1 − Zn,eff(R)]2 + nS2
n,eff(R), (64)

vn(R) = 1
2 [vn(R) + vn−1(R)] . (65)

For n = 0, the SO vortex Green’s function g0(R,ω) is charac-
terized by a single pole. Provided that we define v−1(R) ≡ 0
and δα−1(R) ≡ 0, and impose that only the projection ε = −
is allowed for the lowest-energy level (as for λ originally), the
previous expressions hold also for n = 0.

Not surprisingly, energy spectrum (63) presents a structure
similar to that of the clean spectrum (19). The smooth potential
energy contributions give rise to dressed Zeeman and Rashba
SO couplings, which depend on the level index n as well as
the vortex position R:

Zn,eff(R) ≡ Z + δZn(R) = Z − [vn(R) − vn−1(R)]

�ωc

, (66)

Sn,eff(R) ≡ S + δSn(R) = 2
√

2

ωclB
[〈α(r)〉 + δαn(R)]. (67)

Quite interestingly, the spatially fluctuating parts of the effec-
tive Zeeman and Rashba coupling parameters have different
origins. As naturally expected, (smooth) spatial fluctuations
of the Rashba coefficient α(r) lead to a spatial dispersion of
the energy spin splitting. In addition, spatial fluctuations of
the scalar potential drive also another mechanism of spatial
dispersion of the splitting via an effective Zeeman coupling
[and also via the average effective potential vn(R) since pairs of
spin-split energy levels involve different Landau level indices]
which stems from the spinorial structure of the SO vortex wave
functions.

It is worth noting that energy spectrum (63) is still
characterized by accidental level crossings. The reason for
this is that we have considered a projected Hamiltonian whose
classical limit is integrable. We expect that even tiny mixing
between the energy levels induced by any smooth disorder
potential will induce level repulsion and give rise to tiny
anticrossings in high magnetic fields. A thorough analysis of
these special points in the parameter space (as a function of the
magnetic field or the vortex position) is postponed for future
work.

1. Simple case of a parabolic 1D potential

Now, we aim at analyzing the general energy spectrum (63)
in the simple situation of a parabolic 1D potential V (R) in
the presence of uniform Rashba coupling. In this case, only
the level mixing processes between different n have been
neglected since the drift approximation becomes exact (no
curvature effects). With Eq. (49), we straightforwardly get an
explicit expression for the effective scalar potential for n � 0,

vn(R) = V (R) + l2
B

2

(
n + 1

2

)
�RV (R), (68)

and so for the averaged effective potential vn(R) defined in
Eq. (65). According to Eq. (66), the second-order derivatives
of the potential lead to a modification of the effective Zeeman
coupling with respect to the free case by the (constant) quantity

δZn(R) = − l2
B�RV (R)

2�ωc

(69)

for n � 1.
As an illustration, let us take the 1D potential profile

V (x) = (1/2)m∗ω2
0x

2, with characteristic length scale l0 =√
�/(m∗ω0). This profile describes the edge-states toy model

within the Hall bar geometry, for which no exact explicit
solution valid at any magnetic fields is known analytically
in the presence of Rashba coupling interaction. By neglecting
mixing between different n, we get from the general result (63)
the following analytical expression for the eigenenergies:

ξn,ε(X) = n�ωc

[
1 + 1

2

(
ω0

ωc

)2
]

+ �ω0

2

(
X

l0

)2

−ε

2
�ωc

√√√√
nS2 +

[
1 − Z + 1

2

(
ω0

ωc

)2
]2

. (70)

The energy dispersion thus consists in a set of shifted parabolas
as a function of the coordinate X in the confinement direction,
as shown in Fig. 3. These parabolas, which appear in pairs
with opposite quantum number ε1 = −ε2, present a uniform
energy splitting because the effective Zeeman coupling (66) is
independent of the position for globally quadratic potentials.
We have checked that the obtained energy spin splitting
between paired parabolas is quantitatively consistent in high
magnetic fields with the full numerical study of the quantum
wire model performed in Ref. 27. The analytical solution
(70) is closely related to the energy spectrum derived in
Ref. 28 for the same simple quantum wire model, by using
the well-known mapping27–29 in high magnetic fields of
the quadratic electronic problem in the presence of Rashba
and Zeeman interactions to the exactly integrable Jaynes-
Cummings Hamiltonian. However, the analytical approach
developed in this paper to deal with the high magnetic field
regime proves to be more general since it allows one to also
address the issue of (smooth) disorder effects.

2. Interplay between spatial disorder and spin-orbit fluctuations
in quantum drift states

The analysis of the quantum wire model reveals that a
spatial dispersion of the energy spin splitting can not occur
for a globally quadratic potential. A dispersion becomes
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FIG. 3. (Color online) Energy dispersion (in units of the cy-
clotron energy �ωc) from Eq. (70), as a function of the vortex position
X, for the quadratic 1D potential (shown as a dashed-dotted parabola)
in the absence of n mixing. The characteristic length of the potential
was chosen as l0 = 4lB . The parameters are the same as in Fig. 2,
and the SO strength is Sexp = 0.88 as shown by the vertical line in
Fig. 2. The dashed horizontal lines underline the energies at X = 0.
Note that all the energy levels follow the same parabolic dispersion
in this quadratic model.

nevertheless possible if the Laplacian of the potential varies
spatially, as can be inferred from Eq. (69). In the case of
an arbitrary smooth disorder potential, one has to consider
the expression (63) for the energy spectrum along with the
general expressions (66) and (67) for the effective Zeeman
and SO coupling parameters.

We illustrate the resulting energy dispersion in Fig. 4 in
the case of a random 1D potential V (r) (see the dashed-dotted
line), assuming here a uniform Rashba coupling constant. Not
surprisingly, all the energy levels follow roughly the bare
potential, but more and more pronounced deviations can be
seen for higher-energy levels. A global trend is a flattening
of the spatial dispersion when the level index n increases.
This simply results from stronger averaging effects with
larger cyclotron radii in the average effective potential (65).
Furthermore, some energy levels, which were originally close
in energy in the absence of the disorder potential, may cross
at particular spatial positions. The unavoidable weak mixing
between n levels (which is neglected here for simplicity) is
expected to produce tiny anticrossings in place of the observed
level crossings. We can also notice small differences in the
spatial dispersions of pairs of energy levels with opposite
SO quantum number, which are direct consequences of the
variations δZn(R) of the Zeeman effective coupling with
position. The weakness of this effect is due to the relatively
smooth spatial dependence of the effective potential vn(R) at
the scale of lB [see Eq. (66)].

As a result of the averaging over the cyclotron orbit,
the spatial fluctuations δSn(R) of the effective SO coupling
parameter are also generally expected to be smooth. If the
fluctuations are small in amplitude, it seems relevant to
linearize the contributions δZn(R) and δSn(R) in the energy

FIG. 4. (Color online) Energy dispersion (in units of the cy-
clotron energy �ωc) from Eq. (63), as a function of the vortex
position R, for a smooth random 1D disorder potential (shown
as a dashed-dotted line) in the absence of n mixing. We use the
same parameters as in Fig. 2 with SO coupling strength Sexp =
0.88. The energy dispersion of the levels follows roughly the bare
potential, but presents additional deviations, depending on the level
n and SO indices. Weak level mixing processes (neglected here)
between different n will slightly lift the degeneracies encountered
at the observed crossings. The positions (a), (b), (c) correspond,
respectively, to a local minimum, local maximum, and high gradient
region, and represent the three typical STM tip positions considered
in Fig. 5 when addressing the features of the local density of states.

spectrum (63), so that

ξn,ε(R) � En,ε + �ωc

ε

2

(1 − Z) δZn(R) − nS δSn(R)√
(1 − Z)2 + nS2

+ vn(R). (71)

Using the definition (66) of δZn(R) in terms of the effective
potential vn(R), we can use the latter result to get a simple
approximate expression for the energy spin splitting Es(R) =
ξ0,−(R) − ξ1,+(R) within the first pair of energy levels [states
(1,+) and (0,−)]:

Es(R) � E0,− − E1,+ + �ωc

2

SδS1(R)√
(1 − Z)2 + S2

+ 1

2

[
1 − 1 − Z√

(1 − Z)2 + S2

]
[v0(R) − v1(R)] . (72)

In principle, both δS1(R) and the difference in the effective
potentials [v0(R) − v1(R)] can lead to a spatial dispersion of
the spin splitting. Interestingly, the two mechanisms give rise
to different dependencies on the magnetic field and on the
level index n, which should help to discriminate between
the two contributions to the energy in STS experiments. It
is interesting to note that in the (classical) limit lB → 0, only
the spatial contribution resulting from the fluctuations of the
Rashba coupling coefficient remains. This indicates that the
other dispersive contribution associated with the difference in
effective potentials has a purely quantum-mechanical origin.
These effects resulting from the quantization of the cyclotron
radius are notably more significant within the lowest-energy
levels.
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VI. LOCAL DENSITY OF STATES

A. LDOS in weakly curved disorder potential

Before analyzing in more detail the experimental observa-
tions made in Refs. 15 and 16, we aim at obtaining an analytical
formula for the local density of states (LDOS) which, in
addition to the energy spectrum, also contains information
about the wave functions. Generally speaking, the spectral
LDOS can be computed from the Green’s function expressed in
the electronic representation (43) and evaluated at coinciding
electron positions r = r′ by the general formula

ρ(r,ω) = − 1

π
Im Tr{G(r,r,ω)}. (73)

In the high magnetic field regime (ωc → +∞ while lB
finite), the vortex Green’s function involved in Eq. (43) is
diagonal in the level index n, so that only the diagonal
elements Fn,n(r,r,R) ≡ Fn(r − R) of the kernel functions (44)
are needed. These form factors can be written as42

Fn(r − R) = e−(l2
B/4)�R |	n,R(r)|2 (74)

= (−1)n

πl2
B

Ln

[
2(r − R)2

l2
B

]
e−(r−R)2/l2

B (75)

= 1

πl2
Bn!

∂n

∂sn

e−As (r−R)2/l2
B

1 + s

∣∣∣∣
s=0

, (76)

with As = (1 − s)/(1 + s) and Ln(z) the Laguerre polynomial
of degree n. The alternative writing (76) turns out to be
especially convenient when considering the first levels. Fn(r −
R) is an oscillating function that exhibits a sharp peak of width
lB for |r − R| = Rn, where Rn = √

2nlB corresponds to the
cyclotron radius. Since the spinor weighting functions (15)
and the form factors are purely real functions, the LDOS can
be directly connected to the imaginary part of the SO vortex
Green’s function:

ρ(r,ω) =
∑
σ=±

ρσ (r,ω), (77)

with the spin-projected LDOS given by

ρσ (r,ω) = − 1

π

∫
d2R

2πl2
B

+∞∑
n=0

∑
λ1,λ2

fσ

(
θλ1
n

)
fσ

(
θλ2
n

)
×Fnσ

(r − R) Im gn;λ1;λ2 (R,ω). (78)

We remind here that nσ is defined in Eq. (16) and have set
F−1(r − R) ≡ 0 so that the above formula also holds for n = 0.

In a real STS experiment, the measured LDOS necessar-
ily involves an extrinsic energy broadening caused by the
temperature, which is taken into account by a convolution
of the spectral LDOS with the derivative of the Fermi-Dirac
distribution. The LDOS per spin projection probed at energy
E is thus

ρSTS
σ (r,E,T ) = −

∫
dω ρσ (r,ω)n′

F(ω), (79)

with

n′
F(ω) = − 1

4kBT

1

cosh2[(ω − E)/2kBT ]
. (80)

The introduction of a finite temperature fully justifies the
recourse to a nonperturbative gradient expansion theory as
developed in this work. The controlled character of the theory
is granted in the vortex representation by the existence of
a hierarchy of local energy scales formed by the successive
spatial derivatives of the smooth effective potential generated
by the �-product differential operator [cf. Eq. (57)]. The
quantum drift approximation detailed in Sec. V B encapsulates
the most robust quantum features associated with the (local)
gradient of the potential, while a finite temperature allows
one to disregard smaller (possibly inaccessible) energy scales
characterizing more nonlocal quantum effects that can take
place in a disordered potential landscape at zero temperature.

Inserting the result (62) for the SO vortex Green’s function
established within the quantum drift approximation into
previous formulas (78) and (79), we obtain after integration
over the energy ω and summation over λ1,λ2 an approximate
analytical expression for the STS LDOS per spin projection

ρSTS
σ (r,E,T ) =

∫
d2R

2πl2
B

+∞∑
n=0

∑
ε=±

{−n′
F[ξn,ε(R)]}

×Fnσ
(r − R)

1

2

⎡⎣1 + εσ

√
1 − nS2

n,eff(R)

�n(R)

⎤⎦ .

(81)

This formula constitutes the main basis to interpret the recent
STS experiments.15,16

B. Approximation for potentials smooth on the cyclotron radius

Clearly, even within the leading-order drift approximation,
the electronic LDOS (81) is a result of an intricate interplay
between the drift and cyclotron degrees of freedom, described
by the convolution of the form factor Fnσ

(r − R) representing
the circular motion with the (thermal) vortex spectral den-
sity. We can nevertheless get some useful analytical insight
in particular limiting cases. An obvious simplification of
Eq. (81) occurs in the high-temperature (classical) regime,
when kBT  Rn|∇Rξn,ε(R)|. Under this inequality, we can
essentially consider that R � r inside the functions depending
smoothly on the vortex position, i.e., in the Fermi derivative
function, as well as in the functions Sn,eff(R) and �n(R).
The only remaining dependence on the vortex position R
contained in the kernel function is integrated out thanks to
the normalization condition

∫
d2R Fn(R) = 1. We then get

the semiclassical expression for the total LDOS,

ρSTS(r,E,T ) = 1

2πl2
B

+∞∑
n=0

∑
ε=±

{−n′
F[ξn,ε(r)]}, (82)

which provides peaks of width 2kBT that are centered around
the effective energies ξn,ε(r) given by Eq. (63). Here, we
remind that, according to the definition of the renormalized
SO quantum numbers, only the projection ε = − is allowed
for n = 0.

In the opposite limit of small-temperature broadening, we
can not entirely disregard the dependence of the eigenenergies
on the vortex position R. However, if the latter vary very
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smoothly on the scale of the cyclotron radius [Rn is the
typical characteristic length scale set by the kernel function
Fn(R)], it is reasonable to approximate this dependence up
to the gradient contribution by writing ξn,ε(R) � ξn,ε(r) +
(R − r) · ∇rξn,ε(r) [the other functions Sn,eff(R) and �n(R)
are expanded similarly]. This linearization procedure is quite
rough and the approximation will possibly break down if
the electron starts to feel random fluctuations of the disorder
potential on the scale of Rn. Using the Fourier representation
of the derivative of the Fermi-Dirac distribution (80),

n′
F[ξn,ε(R)] = −

∫ +∞

−∞

dt

2π

πT t

sinh(πT t)
eit[ξn,ε (R)−E], (83)

and the expression for the kernels Fn(R) given in Eq. (76),
we can perform the resulting Gaussian integration over the
vortex position R in Eq. (81) as it was detailed in Ref. 43.
In the limit T → 0, the integral over the variable t in
Eq. (83) becomes then also purely Gaussian and can be
straightforwardly evaluated. As a result, we get the following
low-temperature expression for the spin-resolved LDOS:

ρSTS
σ (r,E,0)

� 1

2πl2
B

+∞∑
n=0

∑
ε=±

1√
πlB |∇rξn,ε(r)|

1

2nσ +1

× 1

nσ !

⎡⎣1 + εσ

√
1 − nS2

n,eff(r)

�n(r)

⎤⎦H 2
nσ

[
ξn,ε(r) − E

lB |∇rξn,ε(r)|
]

× exp

{
−

[
ξn,ε(r) − E

lB |∇rξn,ε(r)|
]2

}
, (84)

where Hn(z) is the Hermite polynomial of degree n. A few
comments are now in order. We first note the appearance of the
local energy scale lB |∇rξn,ε(r)| associated with quantum drift.
It gives rise to an intrinsic energy broadening of the LDOS
peaks which can be roughly estimated as

√
nlB |∇rξn,ε(r)|

when including the spread resulting from the Hermite poly-
nomials in addition to the Gaussian exponential factors.
Expression (84) is actually reminiscent of the conventional
LDOS formula for the (translation-invariant) Landau states
generalized to the spinorial structure of the SO vortex wave
functions. It presents additional asymmetries between the
spin-up and -down states produced by the Rashba SO coupling.
Finally, formula (84) obviously breaks down in the vicinity of
the critical points where the drift energy lB |∇rξn,ε(r)| � 0.
Close to these points, the finite temperature becomes again the
main mechanism of LDOS broadening60 and thus can no more
be neglected. The different situations are all encompassed in
the more general expression (81).

C. Analysis of local spin splitting in STS experiments with InSb
surface gases

In the light of previous formulas, we are now in a position
to interpret the recent LDOS measurements (Refs. 15 and 16)
performed at high magnetic fields in InSb surface gases. We
show in Fig. 5 the results of the calculation for the LDOS
(focusing on the two lowest-energy levels) on the basis of

FIG. 5. (Color online) Local density of states [in units of
1/(2πl2

B )] as a function of the energy E for the three tip positions
defined in Fig. 4, focusing on the first two energy levels with the
quantum numbers (1,+) and (0,−). The labels (a), (b), (c) correspond
to the LDOS measured close to minima, maxima, and regions of
strong gradient of the disorder potential, respectively (see Fig. 4).
The spin-split energy levels are only resolved in cases (a) and (b).
The numbers on the top give the spin splitting in units of �ωc, which in
the present case are bigger for maxima than minima of the potential
landscape. This qualitatively reproduces the experimental features
reported in Refs. 15 and 16. An effective temperature of T = 15 K
was taken here to simulate additional broadening effects (temperature,
experimental energy averaging, etc.).

Eq. (81) for the three different STM tip positions (a), (b), and
(c) chosen in Fig. 4 in the case of a 1D disordered potential and
for a magnetic field of 7 T. Of course, we have chosen here the
same material parameters as in Figs. 2 to 4, which are relevant
for the experiments.15,16 We have also considered a uniform
Rashba coupling, so that the spatial dispersion of the energies
is only induced by the scalar electrostatic disorder. The first
observation is the impossibility to resolve the energy spin
splitting in the case (c), corresponding to a STM tip position in
a region of strong gradient of the disorder potential. In contrast,
a spin-split LDOS can be clearly noticed for the two other
tip positions (a) and (b) located in valley and hill regions of
the potential landscape, respectively. These markedly different
linewidths for the LDOS as a function of tip position, which
were also found in experiments,15,16 can be understood if the
peak broadenings are typically given by the drift energy scale
lB

∣∣∇rξn,ε(r)
∣∣ ∝ lB |∇rV (r)|, as expected in a low-temperature

regime (see previous section). Indeed, the drift energy gets
strongly reduced in potential hills or valleys due to the small
drift velocity, while it may exceed the energy spin splitting in
regions of strong potential gradients.

Another more subtle characteristic feature is the found
correlation between the amplitude of the energy spin splitting
and the disorder potential landscape, which is difficult to
understand if the spatial variations of the spin splitting are
predominantly given by the local fluctuations of the Rashba
SO coupling. We have already established in Sec. V B 2 a
mechanism induced by the combination of a uniform SO
interaction and the potential disorder, which gives rise to a
spatial dispersion of the spin splitting even in the absence of
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Rashba coupling fluctuations. As reported in experiments,15,16

an enhanced spin splitting is found in hill regions in com-
parison with valley regions, with a variation of the order of
10% in Fig. 5. In the case of weak spatial fluctuations of the
effective potential, we have derived the estimation (72) for
the spin splitting between the first energy levels, which can
be further simplified for a very smooth disorder potential by
using expansion (51). As a result, we can directly correlate the
spatial variations δEs(R) of this spin splitting Es with the bare
disorder potential V (R) via the simple analytical relation

δEs(R) � − l2
B

4

[
1 − 1 − Z√

(1 − Z)2 + S2

]
�RV (R). (85)

This formula helps now to understand why a larger Es(R) is
found at hills of the disorder potential: The quantity �RV (R)
is typically negative at potential maxima, thus leading to
δEs(R) > 0, i.e., to an enhancement of the spin splitting.
At potential minima, �RV (R) acquires an opposite sign, so
that Es(R) is generally reduced in valley regions. Note that,
according to the general spectrum (63), this spatial correlation
of the spin splitting with the potential landscape may be
different when considering higher spin-split energy levels
(e.g., it may be reverse depending on the magnetic field).
Further STS experiments are required to make a thorough
comparison with theory, especially to allow a more quantitative
statistical analysis of the spatial fluctuations.

VII. CONCLUSION

In this paper, we have extended to 2DEG with Rashba
SO coupling and Zeeman interaction a semicoherent Green’s
function formalism well suited to study smooth disorder
effects in quantum Hall systems. This formalism is based on
the so-called SO vortex states, which are spinful eigenstates

of the clean Hamiltonian that incorporate the topological
properties of the quantum motion of the electron (circular
path around a singular point). The representation of the
electronic quantum dynamics in terms of these states leads to a
natural decomposition of the global motion into a cyclotronic
motion and a vortex (or guiding-center) drift motion. We have
shown that, at high magnetic fields, the electronic dynamics
can be viewed as a vortex dynamics in the presence of an
effective scalar electrostatic potential and an effective Rashba
interaction. Dyson’s equation of motion for the vortex Green’s
function has been solved for locally flat potential landscapes
(quantum drift approximation), thus providing nonperturbative
controlled expressions for the energy spectrum in the presence
of smooth disorder. We have also derived an analytical formula
for the LDOS at high magnetic fields taking into account
spatial fluctuations of the Rashba coupling parameter, which
should be useful for a future quantitative comparison between
theory and LDOS measurements. We have shown that the
intricate interplay between a smooth disorder potential and
Rashba interaction leads to specific characteristic features
for the spin-split LDOS, some of them having been already
reported in recent STS experiments in InSb surface gases. This
work opens the door to a future thorough comparison between
theory and experiment, especially at a more quantitative
level, aiming at a better characterization of SO coupling in
semiconductors.
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